泰勒展开式的常用公式有哪些?
常用泰勒展开公式如下:
1、e^x=1+x+x^2/2!+x^3/3!+……+x^n/n!+……。
2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)。
3、sinx=x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞<x<∞)。
4、cosx=1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+……(-∞<x<∞)。
5、arcsinx=x+1/2*x^3/3+1*3/(2*4)*x^5/5+……(|x|<1)。
6、arccosx=π-(x+1/2*x^3/3+1*3/(2*4)*x^5/5+……)(|x|<1)。
7、arctanx=x-x^3/3+x^5/5-……(x≤1)。
8、sinhx=x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+……(-∞<x<∞)。
9、coshx=1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)。
10、arcsinhx=x-1/2*x^3/3+1*3/(2*4)*x^5/5-……(|x|<1)。
11、arctanhx=x+x^3/3+x^5/5+……(|x|<1)。
泰勒公式的余项有两类:
一类是定性的皮亚诺余项,另一类是定量的拉格朗日余项。这两类余项本质相同,但是作用不同。
一般来说,当不需要定量讨论余项时,可用皮亚诺余项(如求未定式极限及估计无穷小阶数等问题);当需要定量讨论余项时,要用拉格朗日余项(如利用泰勒公式近似计算函数值)
自然指数函数 e^x 的泰勒展开式:
e^x = 1 + x + x^2/2! + x^3/3! + ... + x^n/n! + ...
正弦函数 sin(x) 的泰勒展开式:
sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ... + (-1)^n * x^(2n+1)/(2n+1)! + ...
余弦函数 cos(x) 的泰勒展开式:
cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + ... + (-1)^n * x^(2n)/(2n)! + ...
对数函数 ln(1+x) 的泰勒展开式:
ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + ... + (-1)^(n+1) * x^n/n + ...
指数函数 a^x (其中 a>0) 的泰勒展开式:
a^x = 1 + xln(a) + (xln(a))^2/2! + (xln(a))^3/3! + ... + (xln(a))^n/n! + ...
幂函数 (1+x)^n 的泰勒展开式:
(1+x)^n = 1 + nx + n(n-1)x^2/2! + n(n-1)(n-2)x^3/3! + ... + n(n-1)...(n-r+1)x^r/r! + ...