线性代数 证明 5
2个回答
展开全部
设A为n阶方阵,由于A可逆,故存在初等阵P1,P2,...,Pi, 和Q1,Q2,...,Qj
使P1P2...PiAQ1Q2...Qj = E.
记P1,P2,...,Pi=P, Q1,Q2,...,Qj =Q.
则有PAQ = E, 从而A =(P逆)(Q逆) 或 A逆= QP. (1)
现构造2n阶方阵(并分块)
R = P 0
0 E
和 S= Q 0
0 E
记原题中的 A E
E 0 为 T,
原题中的 E C
B 0 为 W
则有:RTS = PAQ P
Q 0
注意到PAQ = E, 即有:
PTS = E P
Q 0.
即已经将T变为所指形式.
令PTS= W, 比较知:P=C, Q= B
由(1)式得:A逆= QP = BC
命题得到证明.
使P1P2...PiAQ1Q2...Qj = E.
记P1,P2,...,Pi=P, Q1,Q2,...,Qj =Q.
则有PAQ = E, 从而A =(P逆)(Q逆) 或 A逆= QP. (1)
现构造2n阶方阵(并分块)
R = P 0
0 E
和 S= Q 0
0 E
记原题中的 A E
E 0 为 T,
原题中的 E C
B 0 为 W
则有:RTS = PAQ P
Q 0
注意到PAQ = E, 即有:
PTS = E P
Q 0.
即已经将T变为所指形式.
令PTS= W, 比较知:P=C, Q= B
由(1)式得:A逆= QP = BC
命题得到证明.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询