初三几何题。
如图3-2-47,边长为一的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。(1)若AG=AE,证明:AF=AH;(2)若∠FAH=45...
如图3-2-47,边长为一的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。
(1)若AG=AE,证明:AF=AH;
(2)若∠FAH=45°,证明:AG+AE=FH 展开
(1)若AG=AE,证明:AF=AH;
(2)若∠FAH=45°,证明:AG+AE=FH 展开
展开全部
(1)在Rt△ADH与Rt△ABF中,
∵AD=AB,DH=AG=AE=BF,
∴Rt△ADH≌Rt△ABF,
∴AF=AH.
(2)将△ADH绕点A顺时针旋转90°到△ABM的位置.
在△AMF与△AHF中,
∵AM=AH,AF=AF,
∠MAF=∠MAH-∠FAH=90°-45°=45°=∠FAH,
∴△AMF≌△AHF.
∴MF=HF.
∵MF=MB+BF=HD+BF=AG+AE,
∴AG+AE=FH.
∵AD=AB,DH=AG=AE=BF,
∴Rt△ADH≌Rt△ABF,
∴AF=AH.
(2)将△ADH绕点A顺时针旋转90°到△ABM的位置.
在△AMF与△AHF中,
∵AM=AH,AF=AF,
∠MAF=∠MAH-∠FAH=90°-45°=45°=∠FAH,
∴△AMF≌△AHF.
∴MF=HF.
∵MF=MB+BF=HD+BF=AG+AE,
∴AG+AE=FH.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
初三几何题。
浏览次数:34次悬赏分:0 | 离问题结束还有 13 天 22 小时 | 提问者:燮雅 | 检举
如图3-2-47,边长为一的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。
(1)若AG=AE,证明:AF=AH;
(2)若∠FAH=45°,证明:AG+AE=FH
输入内容已经达到长度限制
还能输入 9999 字
插入图片删除图片插入地图删除地图插入视频视频地图回答即可得2分经验值,回答被采纳可同步增加经验值和财富值
参考资料:匿名回答提交回答 回答 共2条
(1)在Rt△ADH与Rt△ABF中,
∵AD=AB,DH=AG=AE=BF,
∴Rt△ADH≌Rt△ABF,
∴AF=AH.
(2)将△ADH绕点A顺时针旋转90°到△ABM的位置.
在△AMF与△AHF中,
∵AM=AH,AF=AF,
∠MAF=∠MAH-∠FAH=90°-45°=45°=∠FAH,
∴△AMF≌△AHF.
∴MF=HF.
∵MF=MB+BF=HD+BF=AG+AE,
∴AG+AE=FH.
浏览次数:34次悬赏分:0 | 离问题结束还有 13 天 22 小时 | 提问者:燮雅 | 检举
如图3-2-47,边长为一的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。
(1)若AG=AE,证明:AF=AH;
(2)若∠FAH=45°,证明:AG+AE=FH
输入内容已经达到长度限制
还能输入 9999 字
插入图片删除图片插入地图删除地图插入视频视频地图回答即可得2分经验值,回答被采纳可同步增加经验值和财富值
参考资料:匿名回答提交回答 回答 共2条
(1)在Rt△ADH与Rt△ABF中,
∵AD=AB,DH=AG=AE=BF,
∴Rt△ADH≌Rt△ABF,
∴AF=AH.
(2)将△ADH绕点A顺时针旋转90°到△ABM的位置.
在△AMF与△AHF中,
∵AM=AH,AF=AF,
∠MAF=∠MAH-∠FAH=90°-45°=45°=∠FAH,
∴△AMF≌△AHF.
∴MF=HF.
∵MF=MB+BF=HD+BF=AG+AE,
∴AG+AE=FH.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询