如图,在△ABC中,∠A=60°,AB=AC,点D是AC的中点,延长BC至E,使CE=CD,DF⊥于点F,试说明BF=EF的理由
展开全部
证明:
连接BD
由∠A=60°,AB=AC可知,△ABC为等边三角形,∠C=60°;D是AC的中点,有BD⊥AC,∠CBD=30°;因为CE=CD,所以∠E=∠CDE=30°=∠CBD,△BDE为等腰三角形;在等腰三角形BDE中,因为DF⊥BE,所以BF=EF
连接BD
由∠A=60°,AB=AC可知,△ABC为等边三角形,∠C=60°;D是AC的中点,有BD⊥AC,∠CBD=30°;因为CE=CD,所以∠E=∠CDE=30°=∠CBD,△BDE为等腰三角形;在等腰三角形BDE中,因为DF⊥BE,所以BF=EF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询