如图,在⊙o中,弦AB,CD交于点P,AB=CD,求证;op平分角BPD

lx_yokumen
2011-09-19 · TA获得超过511个赞
知道小有建树答主
回答量:216
采纳率:66%
帮助的人:187万
展开全部
首先我们知道,在同一个圆内,弦长相等意味着所对应的圆周角相等
于是我们有∠ADB=∠CBD
同时注意到∠ADC=∠ABC(同时对应弦AC)
两式相减有∠PDB=∠PBD
也就是说PD=PB(△PDB是等腰三角形)
连接OP,OD,OB
一下几个条件比较简单得到
OD=OB=半径
OP=OP
加上先前推得PD=PB
于是△POD全等于△POB
因此OP平分∠BPD也就可以证明了
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式