1个回答
展开全部
解:∵原式=lim(x->0){[sin(x^n)/(x^n)]*[(x/sinx)^m]*[x^(n-m)]}
=lim(x->0)[sin(x^n)/(x^n)]*lim(x->0)[(x/sinx)^m]*lim(x->0)[x^(n-m)]
=1*(1^m)*lim(x->0)[x^(n-m)] (应用重要极限lim(z->0)(sinz/z)=1)
=lim(x->0)[x^(n-m)]
∴当m<n时,原式=lim(x->0)[x^(n-m)]=0;
当m=n时,原式=lim(x->0)[x^(n-m)]=1;
当m>n时,原式=lim(x->0)[x^(n-m)]=∞。
=lim(x->0)[sin(x^n)/(x^n)]*lim(x->0)[(x/sinx)^m]*lim(x->0)[x^(n-m)]
=1*(1^m)*lim(x->0)[x^(n-m)] (应用重要极限lim(z->0)(sinz/z)=1)
=lim(x->0)[x^(n-m)]
∴当m<n时,原式=lim(x->0)[x^(n-m)]=0;
当m=n时,原式=lim(x->0)[x^(n-m)]=1;
当m>n时,原式=lim(x->0)[x^(n-m)]=∞。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询