3个回答
展开全部
解法一:
y=2x²-2x+3/x²-x+1
化为(y-2)x²+(2-y)x+y-3=0(1)
△=(2-y)²-4(y-2)(y-3)≥0
即y²-4y+4-4y²+20y-24≥0
3y²-16y+20≤0
(3y-10)(y-2)≤0
解得2≤y≤10/3
当y=2时代入方程(1)
得-1=0不符合
固函数值域为(2, 10/3]
解法二:
y=2x²-2x+3/x²-x+1
化为y=(2(x²-x+1)+1)/(x²-x+1)
=2+1/(x²-x+1)
=2+1/((x-1/2)²+3/4)
∵(x-1/2)²≥0
∴1/((x-1/2)²+3/4)>0
且当x=1/2时1/((x-1/2)²+3/4)有最大值为4/3
所以2<y≤2+4/3
即2<y≤10/3
y=2x²-2x+3/x²-x+1
化为(y-2)x²+(2-y)x+y-3=0(1)
△=(2-y)²-4(y-2)(y-3)≥0
即y²-4y+4-4y²+20y-24≥0
3y²-16y+20≤0
(3y-10)(y-2)≤0
解得2≤y≤10/3
当y=2时代入方程(1)
得-1=0不符合
固函数值域为(2, 10/3]
解法二:
y=2x²-2x+3/x²-x+1
化为y=(2(x²-x+1)+1)/(x²-x+1)
=2+1/(x²-x+1)
=2+1/((x-1/2)²+3/4)
∵(x-1/2)²≥0
∴1/((x-1/2)²+3/4)>0
且当x=1/2时1/((x-1/2)²+3/4)有最大值为4/3
所以2<y≤2+4/3
即2<y≤10/3
展开全部
y=2x²-2x+3/x²-x+1
变形为(y-2)x²+(2-y)x+y-3=0
方程有实数根,所以判别式=(2-y)²-4(y-2)(y-3)≥0
即y²-4y+4-4y²+20y-24≥0
3y²-16y+20≤0
(3x-10)(x-2)≤0
解得2≤x≤10/3
所以值域为[2, 10/3]
变形为(y-2)x²+(2-y)x+y-3=0
方程有实数根,所以判别式=(2-y)²-4(y-2)(y-3)≥0
即y²-4y+4-4y²+20y-24≥0
3y²-16y+20≤0
(3x-10)(x-2)≤0
解得2≤x≤10/3
所以值域为[2, 10/3]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2016-01-03
展开全部
同学们笑起来
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询