出一道超强的数学推论题,高分求正确答案.

前言:答题者请将思路和推论过程写清楚。现在开始出题:有5个海贼发现了一箱子金币,一共100枚。大家决定按老方法分配金币。既:由老大提出分配方法,其他人投票。如果同意的人数... 前言:答题者请将思路和推论过程写清楚。现在开始出题:

有5个海贼发现了一箱子金币,一共100枚。大家决定按老方法分配金币。既:由老大提出分配方法,其他人投票。如果同意的人数少于或等于半数(老大自己也可以投票),那么老大将要被扔到海里喂鱼。接下去由老二开始继续提出分配方法,如果同意人数少于或等于半数,则老二扔去喂鱼,由老三继续分,以此类推。

现在给出提问:假如5个海贼都绝顶聪明(每个人能想到的方法,其他人都能想到并理解)。老大应该如何分配金币才能保证自己不死的前提下,分到尽量多的金币?他的分配方案是怎样的?
展开
 我来答
wuqunshan
高赞答主

2007-08-05 · 你的赞同是对我最大的认可哦
知道大有可为答主
回答量:4.3万
采纳率:70%
帮助的人:2.7亿
展开全部
推理过程是这样的:

从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。

3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。

不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。

同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。

“海盗分金”其实是一个高度简化和抽象的模型,体现了博弈的思想。在“海盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。企业中的一把手,在搞内部人控制时,经常是抛开二号人物,而与会计和出纳们打得火热,就是因为公司里的小人物好收买。

1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。这不正是全球化过程中先进国家的先发优势吗?而5号,看起来最安全,没有死亡的威胁,甚至还能坐收渔人之利,却因不得不看别人脸色行事而只能分得一小杯羹。

不过,模型任意改变一个假设条件,最终结果都不一样。而现实世界远比模型复杂。

首先,现实中肯定不会是人人都“绝对理性”。回到“海盗分金”的模型中,只要3号、4号或5号中有一个人偏离了绝对聪明的假设,海盗1号无论怎么分都可能会被扔到海里去了。所以,1号首先要考虑的就是他的海盗兄弟们的聪明和理性究竟靠得住靠不住,否则先分者倒霉。

如果某人偏好看同伙被扔进海里喂鲨鱼。果真如此,1号自以为得意的方案岂不成了自掘坟墓!

再就是俗话所说的“人心隔肚皮”。由于信息不对称,谎言和虚假承诺就大有用武之地,而阴谋也会像杂草般疯长,并借机获益。如果2号对3、4、5号大放烟幕弹,宣称对于1号所提出任何分配方案,他一定会再多加上一个金币给他们。这样,结果又当如何?

通常,现实中人人都有自认的公平标准,因而时常会嘟嚷:“谁动了我的奶酪?”可以料想,一旦1号所提方案和其所想的不符,就会有人大闹……当大家都闹起来的时候,1号能拿着97枚金币毫发无损、镇定自若地走出去吗?最大的可能就是,海盗们会要求修改规则,然后重新分配。想一想二战前的希特勒德国吧!

而假如由一次博弈变成重复博弈呢?比如,大家讲清楚下次再得100枚金币时,先由2号海盗来分……然后是3号……这颇有点像美国总统选举,轮流主政。说白了,其实是民主形式下的分赃制。

最可怕的是其他四人形成一个反1号的大联盟并制定出新规则:四人平分金币,将1号扔进大海……这就是阿Q式的革命理想:高举平均主义的旗帜,将富人扔进死亡深渊……
没落的食神
2007-08-05 · 超过26用户采纳过TA的回答
知道答主
回答量:88
采纳率:0%
帮助的人:0
展开全部
设每一个海盗都是绝顶聪明而理性,他们都能够进行严密的逻辑推理,并能很理智的判断自身的得失,即能够在保住性命的前提下得到最多的金币。同时还假设每一轮表决后的结果都能顺利得到执行,那么抽到1号的海盗应该提出怎样的分配方案才能使自己既不被扔进海里,又可以得到更多的金币呢?
此题公认的标准答案是:1号海盗分给3号1枚金币,4号或5号2枚金币,自己则独得97枚金币,即分配方案为(97,0,1,2,0)或(97,0,1,0,2)。现来看如下各人的理性分析:
首先从5号海盗开始,因为他是最安全的,没有被扔下大海的风险,因此他的策略也最为简单,即最好前面的人全都死光光,那么他就可以独得这100枚金币了。
接下来看4号,他的生存机会完全取决于前面还有人存活着,因为如果1号到3号的海盗全都喂了鲨鱼,那么在只剩4号与5号的情况下,不管4号提出怎样的分配方案,5号一定都会投反对票来让4号去喂鲨鱼,以独吞全部的金币。哪怕4号为了保命而讨好5号,提出(0,100)这样的方案让5号独占金币,但是5号还有可能觉得留着4号有危险,而投票反对以让其喂鲨鱼。因此理性的4号是不应该冒这样的风险,把存活的希望寄托在5号的随机选择上的,他惟有支持3号才能绝对保证自身的性命。
再来看3号,他经过上述的逻辑推理之后,就会提出(100,0,0)这样的分配方案,因为他知道4号哪怕一无所获,也还是会无条件的支持他而投赞成票的,那么再加上自己的1票就可以使他稳获这100金币了。
但是,2号也经过推理得知了3号的分配方案,那么他就会提出(98,0,1,1)的方案。因为这个方案相对于3号的分配方案,4号和5号至少可以获得1枚金币,理性的4号和5号自然会觉得此方案对他们来说更有利而支持2号,不希望2号出局而由3号来进行分配。这样,2号就可以屁颠屁颠的拿走98枚金币了。
不幸的是,1号海盗更不是省油的灯,经过一番推理之后也洞悉了2号的分配方案。他将采取的策略是放弃2号,而给3号1枚金币,同时给4号或5号2枚金币,即提出(97,0,1,2,0)或(97,0,1,0,2)的分配方案。由于1号的分配方案对于3号与4号或5号来说,相比2号的方案可以获得更多的利益,那么他们将会投票支持1号,再加上1号自身的1票,97枚金币就可轻松落入1号的腰包了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式