双曲线X^2/4-y^2/b^2=1左右焦点为F1F2,P为双曲线上一点,若绝对值PF1 *绝对值PF2=绝对值F1F2^2,求双曲线

且绝对值PF2<4... 且绝对值PF2<4 展开
xiezi456789
2011-10-04 · TA获得超过170个赞
知道答主
回答量:59
采纳率:0%
帮助的人:59.1万
展开全部
解: 设PF1=m ,PF2=n ,
由题意得,C=√b^2+4 ∴|F1F2|=2√b^2+4
又, |F1F2|^2 =PF1*PF2
即m*n=|F1F2|^2=4(b^2+4)①
由双曲线定义得,m-n=2a=4②
由①②式,得n^2+4n-4b^2 -16=0
X=(-4±√[16+4(4b^2+16)]/2
负的舍去~~ 即n=X=-4+√[16+4(4b^2+16)]/2=-2+2√(b^2+5)
当X=4时,b=2 又n=PF2|<4,∴b=1
所以该双曲线方程为:x^2\4-y^2=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式