求解,第23题
1个回答
展开全部
cosA + cosB = 2cos((A-B)/2)cos((A+B)/2) = 2cos((A-B)/2)cos(pi/2 - C/2) = 2cos((A-B)/2)sinC
a = 2RsinA, b = 2RsinB, c = 2RsinC
a^2-b^2 = 4R^2 *(sin^2A-sin^2B) = 4R^2 (cos^2B - cos^2A)
所以原式 = 4R^2 *(cosB - cosA) + 4R^2 *(cosC - cosB) + 4R^2 *(cosA - cosC) = 0
a = 2RsinA, b = 2RsinB, c = 2RsinC
a^2-b^2 = 4R^2 *(sin^2A-sin^2B) = 4R^2 (cos^2B - cos^2A)
所以原式 = 4R^2 *(cosB - cosA) + 4R^2 *(cosC - cosB) + 4R^2 *(cosA - cosC) = 0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询