设f(x)在[a,b]上连续,且a<c<d<b,证明:对任何整数p,q至少存在一点ζ∈(a,b),使得pf(c)+qf(d)=(p+q)f(ζ)
设f(x)在[a,b]上连续,且a<c<d<b,证明:对任何整数p,q至少存在一点ζ∈(a,b),使得pf(c)+qf(d)=(p+q)f(ζ)...
设f(x)在[a,b]上连续,且a<c<d<b,证明:对任何整数p,q至少存在一点ζ∈(a,b),使得pf(c)+qf(d)=(p+q)f(ζ)
展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询