已知数列{an}满足an=2an-1+2n-1(n∈N+,n≥2),且a4=65.求数列{an}的前n项和Sn
已知数列{an}满足an=2an-1+2n-1(n∈N+,n≥2),且a4=65.求数列{an}的前n项和Sn....
已知数列{an}满足an=2an-1+2n-1(n∈N+,n≥2),且a4=65.求数列{an}的前n项和Sn.
展开
1个回答
展开全部
由a4=65,an=2an-1+2n-1,得
65=2a3+24?1,即a3=25,
25=2a2+23?1,即a2=9,
9=2a1+22?1,即a1=3.
∵an=2an-1+2n-1(n≥2),
∴
=
+1?
,
∴
?
=1(n≥2),
则{
}成等差数列.
∴
=1+n?1=n,
∴an=2n+1,
∴Sn=1?2+2?22+3?23+…+n?2n.
令Tn=1?2+2?22+3?23+…+n?2n,
则2Tn=1?22+2?23+…+(n?1)?2n+n?2n+1,
∴-Tn=2+22+23+…+2n-n?2n+1=2n+1-2-n?2n+1=(1-n)2n+1-2,
∴Tn=(n-1)2n+1+2.
Sn=(n?1)2n+1+n+2.
65=2a3+24?1,即a3=25,
25=2a2+23?1,即a2=9,
9=2a1+22?1,即a1=3.
∵an=2an-1+2n-1(n≥2),
∴
an |
2n |
an?1 |
2n?1 |
1 |
2n |
∴
an?1 |
2n |
an?1?1 |
2n?1 |
则{
an?1 |
2n |
∴
an?1 |
2n |
∴an=2n+1,
∴Sn=1?2+2?22+3?23+…+n?2n.
令Tn=1?2+2?22+3?23+…+n?2n,
则2Tn=1?22+2?23+…+(n?1)?2n+n?2n+1,
∴-Tn=2+22+23+…+2n-n?2n+1=2n+1-2-n?2n+1=(1-n)2n+1-2,
∴Tn=(n-1)2n+1+2.
Sn=(n?1)2n+1+n+2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询