某射击运动员在一次射击中,命中10环、9环、8环、7环的概率分别为0.2、0.35、0.2、0,15.求此运动员(1
某射击运动员在一次射击中,命中10环、9环、8环、7环的概率分别为0.2、0.35、0.2、0,15.求此运动员(1)在一次射击中,命中10环或9环的概率.(2)在一次射...
某射击运动员在一次射击中,命中10环、9环、8环、7环的概率分别为0.2、0.35、0.2、0,15.求此运动员(1)在一次射击中,命中10环或9环的概率.(2)在一次射击中,命中环数小于8环的概率.(3)在两次射击中,至少有一次击中10环的概率.
展开
1个回答
展开全部
(1)设“命中10环”为事件A,“命中9环”为事件B,则A、B互斥,
故在一次射击中,命中10环或9环的概率为 P(A+B)=P(A)+P(B)=0.2+0.35=0.55.…(4分)
(2)设“命中10环、9环或8环”为事件C,则P(C)=0.2+0.35+0.2=0.75,
故小于8环的概率:P(
)=1-P(C)=0.25.…(9分)
(3)设“第一次命中10环”与“第二次命中10环”分别为事件M、N,则M与N相互独立,则至少有一次击中10环的概率为
P=P(M)?P(N)+P(
)?P(N)+P(M)?P(
)
=1-P(
)?P(
)=-1-0.82 =0.36.…(14分)
故在一次射击中,命中10环或9环的概率为 P(A+B)=P(A)+P(B)=0.2+0.35=0.55.…(4分)
(2)设“命中10环、9环或8环”为事件C,则P(C)=0.2+0.35+0.2=0.75,
故小于8环的概率:P(
. |
C |
(3)设“第一次命中10环”与“第二次命中10环”分别为事件M、N,则M与N相互独立,则至少有一次击中10环的概率为
P=P(M)?P(N)+P(
. |
M |
. |
N |
=1-P(
. |
M |
. |
N |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询