如图,在梯形ABCD中, AB∥DC,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.⑴求证:DC=BC;⑵E是梯形内

如图,在梯形ABCD中,AB∥DC,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.⑴求证:DC=BC;⑵E是梯形内的一点,F是梯形外的一点,且∠EDC=∠F... 如图,在梯形ABCD中, AB∥DC,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.⑴求证:DC=BC;⑵E是梯形内的一点,F是梯形外的一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;⑶在⑵的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值. 展开
 我来答
gotk0119
推荐于2016-01-31 · TA获得超过110个赞
知道答主
回答量:104
采纳率:0%
帮助的人:135万
展开全部
(1)过A作DC的垂线AM交DC于M,  

AM=BC=2.(1分)    又tan∠ADC=2,所以 .(2分)
因为MC=AB=1,所以DC=DM+MC=2,即DC=BC.(3分)
(2)等腰直角三角形.(4分)
证明:因为DE=DF,∠EDC=∠FBC,DC=BC.   所以,△DEC≌△BFC(5分)
所以,CE=CF,∠ECD=∠BCF.   
所以,∠ECF=∠BCF+∠BCE=∠ECD+∠BCE=∠BCD=90°
即△ECF是等腰直角三角形.(6分)
(3)设BE=k,则CE=CF=2k,所以 .(7分)
因为∠BEC=135°,又∠CEF=45°,所以∠BEF=90°.(8分)    
所以 (9分)
所以 .(10分)

(1)过A点作AG⊥DC,垂足为G,只需求DG+CG,在直角三角形AGD中,可求DG=5,所以DC=BC;
(2)由已知可证△DEC≌△BFC,得EC=CF,∠ECD=∠FCB,由∠BCE+∠ECD=90°得∠ECF=90°,即△ECF是等腰直角三角形;
(3)设BE=k,CE= 2k,由已知,求出∠BEF=90°,根据勾股定理求出BF=3k,根据锐角三角函数的定义即可求出答案.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式