设a为锐角,若cos(a+π/6)=4/5.则sin(2a+π/12)=?
2个回答
展开全部
∵0<α<π/2 ∴π/6<α+π/6<2π/3
又cos(α+π/6)=4/5 ∴π/6<α+π/6<π/2
∴sin(α+π/6)=3/5
∴sin[2(α+π/6)]=2sin(α+π/6)cos(α+π/6)=2*3/5*4/5=24/25
cos[2(α+π/6)]=1-2sin²(α+π/6)=1-2*(3/5)²=7/25
又2α+π/12=2(α+π/6)-π/4
∴sin(2α+π/12)=sin[2(α+π/6)-π/4]=sin[2(α+π/6)]cosπ/4-cos[2(α+π/6)]sinπ/4
=(24/25)*(√2/2)-(7/25)*(√2/2)=(17√2)/50
又cos(α+π/6)=4/5 ∴π/6<α+π/6<π/2
∴sin(α+π/6)=3/5
∴sin[2(α+π/6)]=2sin(α+π/6)cos(α+π/6)=2*3/5*4/5=24/25
cos[2(α+π/6)]=1-2sin²(α+π/6)=1-2*(3/5)²=7/25
又2α+π/12=2(α+π/6)-π/4
∴sin(2α+π/12)=sin[2(α+π/6)-π/4]=sin[2(α+π/6)]cosπ/4-cos[2(α+π/6)]sinπ/4
=(24/25)*(√2/2)-(7/25)*(√2/2)=(17√2)/50
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询