1个回答
展开全部
(1-3/2×4)×(1-3/3×5)×(1-3/4×6)×(1-3/5×7)×……×(1-3/96×98)×(1-3/97×99)=
首先明白:
1-[3/n*(n+2)]=[n*(n+2)-3]/[n*(n+2)]
=[n^2+2n-3]/[n*(n+2)]
=[(n-1)*(n+3)]/[n*(n+2)]
=[(n-1)/n]*[(n+3)/(n+2)]
这里的n为从2开始的自然数
所以,上式
=[(1/2)*(5/3)]*[(2/3)*(6/5)]*[(3/4)*(7/6)]*……*[(94/95)*(98/97)]*[(95/96)*(99/98)]*[(96/97)*(100/99)]
然后将每一个中括号中前面一项均提出来,再将每一个中括号中的后一项提出来
=[(1/2)*(2/3)*(3/4)*……*(94/95)*(95/96)*(96/97)]*[(5/3)*(6/5)*(7/6)*……*(98/97)*(99/98)*(100/99)]
再每个中括号内隔项约分
=(1/97)*(100/4)
=25/97
首先明白:
1-[3/n*(n+2)]=[n*(n+2)-3]/[n*(n+2)]
=[n^2+2n-3]/[n*(n+2)]
=[(n-1)*(n+3)]/[n*(n+2)]
=[(n-1)/n]*[(n+3)/(n+2)]
这里的n为从2开始的自然数
所以,上式
=[(1/2)*(5/3)]*[(2/3)*(6/5)]*[(3/4)*(7/6)]*……*[(94/95)*(98/97)]*[(95/96)*(99/98)]*[(96/97)*(100/99)]
然后将每一个中括号中前面一项均提出来,再将每一个中括号中的后一项提出来
=[(1/2)*(2/3)*(3/4)*……*(94/95)*(95/96)*(96/97)]*[(5/3)*(6/5)*(7/6)*……*(98/97)*(99/98)*(100/99)]
再每个中括号内隔项约分
=(1/97)*(100/4)
=25/97
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询