如图,已知AB是圆O的弦,OB=2,角B=30°,C是弦AB上的任意一点(不与A,B重合),连接CO并延长CO交与圆O于点 5
3)当AC的长度为多少时,以A,C,D为顶点的三角形与以B,C,O为顶点的三角形相似?请写出解答过程。...
3)当AC的长度为多少时,以A,C,D为顶点的三角形与以B,C,O为顶点的三角形相似?请写出解答过程。
展开
4个回答
展开全部
解:过点O作OE⊥AB于E,
则AE=BE= 12AB,∠OEB=90°,
∵OB=2,∠B=30°,
∴BE=OB•cos∠B=2× 32= 3,
∴AB=2 3;
故答案为:2 3;
(2)连接OA,
∵OA=OB,OA=OD,
∴∠BAO=∠B,∠DAO=∠D,
∴∠DAB=∠BAO+∠DAO=∠B+∠D,
又∵∠B=30°,∠D=20°,
∴∠DAB=50°,
∴∠BOD=2∠DAB=100°;
(3)∵∠BCO=∠A+∠D,
∴∠BCO>∠A,∠BCO>∠D,
∴要使△DAC与△BOC相似,只能∠DCA=∠BCO=90°,
此时∠BOC=60°,∠BOD=120°,
∴∠DAC=60°,
∴△DAC∽△BOC,
∵∠BCO=90°,
即OC⊥AB,
∴AC= 12AB= 3.
则AE=BE= 12AB,∠OEB=90°,
∵OB=2,∠B=30°,
∴BE=OB•cos∠B=2× 32= 3,
∴AB=2 3;
故答案为:2 3;
(2)连接OA,
∵OA=OB,OA=OD,
∴∠BAO=∠B,∠DAO=∠D,
∴∠DAB=∠BAO+∠DAO=∠B+∠D,
又∵∠B=30°,∠D=20°,
∴∠DAB=50°,
∴∠BOD=2∠DAB=100°;
(3)∵∠BCO=∠A+∠D,
∴∠BCO>∠A,∠BCO>∠D,
∴要使△DAC与△BOC相似,只能∠DCA=∠BCO=90°,
此时∠BOC=60°,∠BOD=120°,
∴∠DAC=60°,
∴△DAC∽△BOC,
∵∠BCO=90°,
即OC⊥AB,
∴AC= 12AB= 3.
展开全部
(3)∵∠BCO=∠A+∠D,
∴∠BCO>∠A,∠BCO>∠D,
∴要使△DAC与△BOC相似,只能∠DCA=∠BCO=90°,
此时∠BOC=60°,∠BOD=120°,
∴∠DAC=60°,
∴△DAC全等于△BOC,
∵∠BCO=90°,
即OC⊥AB,
∴AC=1/2AB=根号3
∴∠BCO>∠A,∠BCO>∠D,
∴要使△DAC与△BOC相似,只能∠DCA=∠BCO=90°,
此时∠BOC=60°,∠BOD=120°,
∴∠DAC=60°,
∴△DAC全等于△BOC,
∵∠BCO=90°,
即OC⊥AB,
∴AC=1/2AB=根号3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:过点O作OE⊥AB于E,
则AE=BE= 12AB,∠OEB=90°,
∵OB=2,∠B=30°,
∴BE=OB•cos∠B=2× 32= 3,
∴AB=2 3;
故答案为:2 3;
(2)连接OA,
∵OA=OB,OA=OD,
∴∠BAO=∠B,∠DAO=∠D,
∴∠DAB=∠BAO ∠DAO=∠B ∠D,
又∵∠B=30°,∠D=20°,
∴∠DAB=50°,
∴∠BOD=2∠DAB=100°;
(3)∵∠BCO=∠A ∠D,
∴∠BCO>∠A,∠BCO>∠D,
∴要使△DAC与△BOC相似,只能∠DCA=∠BCO=90°,
此时∠BOC=60°,∠BOD=120°,
∴∠DAC=60°,
∴△DAC∽△BOC,
∵∠BCO=90°,
即OC⊥AB,
∴AC= 12AB= 3.
则AE=BE= 12AB,∠OEB=90°,
∵OB=2,∠B=30°,
∴BE=OB•cos∠B=2× 32= 3,
∴AB=2 3;
故答案为:2 3;
(2)连接OA,
∵OA=OB,OA=OD,
∴∠BAO=∠B,∠DAO=∠D,
∴∠DAB=∠BAO ∠DAO=∠B ∠D,
又∵∠B=30°,∠D=20°,
∴∠DAB=50°,
∴∠BOD=2∠DAB=100°;
(3)∵∠BCO=∠A ∠D,
∴∠BCO>∠A,∠BCO>∠D,
∴要使△DAC与△BOC相似,只能∠DCA=∠BCO=90°,
此时∠BOC=60°,∠BOD=120°,
∴∠DAC=60°,
∴△DAC∽△BOC,
∵∠BCO=90°,
即OC⊥AB,
∴AC= 12AB= 3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(3)∵∠BCO=∠A+∠D,
∴∠BCO>∠A,∠BCO>∠D,
∴要使△DAC与△BOC相似,只能∠DCA=∠BCO=90°,
此时∠BOC=60°,∠BOD=120°,
∴∠DAC=60°,
∴△DAC∽△BOC,
∵∠BCO=90°,
即OC⊥AB,
∴AC= 1/2AB= 根号3.
∴∠BCO>∠A,∠BCO>∠D,
∴要使△DAC与△BOC相似,只能∠DCA=∠BCO=90°,
此时∠BOC=60°,∠BOD=120°,
∴∠DAC=60°,
∴△DAC∽△BOC,
∵∠BCO=90°,
即OC⊥AB,
∴AC= 1/2AB= 根号3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询