过边长为1的等边△ABC的边AB上的一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,则DE的长为
2个回答
展开全部
解:过P作BC的平行线交AC于F,
∴∠Q=∠FPD,
∵△ABC是等边三角形,
∴∠APF=∠B=60°,∠AFP=∠ACB=60°,
∴△APF是等边三角形,
∴AP=PF,
∵AP=CQ,
∴PF=CQ,
∵在△PFD和△QCD中,
{∠FPD=∠Q∠PDF=∠QDCPF=CQ,
∴△PFD≌△QCD(AAS),
∴FD=CD,
∵PE⊥AC于E,△APF是等边三角形,
∴AE=EF,
∴AE+DC=EF+FD,
∴ED=12AC,
∵AC=2,
∴DE=1.
故DE的长为1.
这个其实一样,把2换为1,答案就为1/2.
∴∠Q=∠FPD,
∵△ABC是等边三角形,
∴∠APF=∠B=60°,∠AFP=∠ACB=60°,
∴△APF是等边三角形,
∴AP=PF,
∵AP=CQ,
∴PF=CQ,
∵在△PFD和△QCD中,
{∠FPD=∠Q∠PDF=∠QDCPF=CQ,
∴△PFD≌△QCD(AAS),
∴FD=CD,
∵PE⊥AC于E,△APF是等边三角形,
∴AE=EF,
∴AE+DC=EF+FD,
∴ED=12AC,
∵AC=2,
∴DE=1.
故DE的长为1.
这个其实一样,把2换为1,答案就为1/2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询