已知,如图,D(0,1),圆D交Y轴于A,B两点,交X轴负半轴于C点,过C点的直线Y=-2X-4
已知,如图,D(0,1),圆D交Y轴于A,B两点,交X轴负半轴于C点,过C点的直线y=-2x-4与Y轴交于P。(CD有连线,自己连一下吧,)(已在第一问中证得PC切圆D)...
已知,如图,D(0,1),圆D交Y轴于A,B两点,交X轴负半轴于C点,过C点的直线y=-2x-4与Y轴交于P。(CD有连线,自己连一下吧,)(已在第一问中证得PC切圆D)。
(2)判断在直线PC上是否存在点E,使得S三角形EOC=4S三角形COD,若存在,求出点E的坐标,若不存在,请说明理由 展开
(2)判断在直线PC上是否存在点E,使得S三角形EOC=4S三角形COD,若存在,求出点E的坐标,若不存在,请说明理由 展开
展开全部
分析:(1)分别求得点C、P的坐标,再根据勾股定理的逆定理得到直角三角形,从而根据切线的判定即可证明;
(2)首先求得三角形COD的面积,进而求得三角形EOC的面积,根据OC的长,确定点E的纵坐标,再根据直线的解析式求得点E的横坐标即可.
解:(1)PC与⊙D的位置关系是相切.理由如下:
在y=-2x-4中,得C(-2,0),P(0,-4),
则CD2=4+1=5,CP2=4+16=20,PD2=(1+4)2=25,
则CD2+CP2=PD2,
∴∠DCP=90°,
∴PC与⊙D的位置关系是相切.
(2)∵S△CDO=1,
∴S△EOC=4S△CDO=4,
又OC=2,
∴点E到OC的距离是4,即点E的纵坐标是±4.
当y=4时,则x=4;当y=-4时,则x=0.
即E(-4,4)或(0,-4).
(2)首先求得三角形COD的面积,进而求得三角形EOC的面积,根据OC的长,确定点E的纵坐标,再根据直线的解析式求得点E的横坐标即可.
解:(1)PC与⊙D的位置关系是相切.理由如下:
在y=-2x-4中,得C(-2,0),P(0,-4),
则CD2=4+1=5,CP2=4+16=20,PD2=(1+4)2=25,
则CD2+CP2=PD2,
∴∠DCP=90°,
∴PC与⊙D的位置关系是相切.
(2)∵S△CDO=1,
∴S△EOC=4S△CDO=4,
又OC=2,
∴点E到OC的距离是4,即点E的纵坐标是±4.
当y=4时,则x=4;当y=-4时,则x=0.
即E(-4,4)或(0,-4).
追问
饿,我的思维好僵化啊,这都想不到,.....
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
S三角形什么意思 三角形面积吗
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询