2011年研究生数学三第19题f'(t)=(2/(1+t^2))f(t),怎么解出f(t)的?
1个回答
2011-10-24
展开全部
f'(t)=(2/(1+t^2))f(t)
==> f'(t)/f(t)=2/(1+t^2)
==> d(ln(f(t))=[2/(1+t^2)]dt
==> ln(f(t))= ∫ [2/(1+t^2)]dt = 2 arctant + C
==> f(t)=e^(2 arctant + C)= C' e^(2arctant). (C'>0)
==> f'(t)/f(t)=2/(1+t^2)
==> d(ln(f(t))=[2/(1+t^2)]dt
==> ln(f(t))= ∫ [2/(1+t^2)]dt = 2 arctant + C
==> f(t)=e^(2 arctant + C)= C' e^(2arctant). (C'>0)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询