如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,△ADC和△ABE是等边三角形,DE交AB于点F,求证:F是DE的中点
2个回答
展开全部
证明:
过E点作EG⊥AB,交AB于G
∵⊿ABE是等边三角形,根据三线合一,EG是中线
∴AG=BG=½AB
∵∠ACB=90°,∠BAC=30°
∴BC=½AB【30º角所对的直角边等于斜边的一半】
∴BG=BC
∵∠ACB=∠ECB=90º,
∠GBE =∠CBA=60º
∴⊿ACB ≌⊿EGB(AAS)
∴AC=EG
∵AD=AC
∴AD=EG
又∵∠DAF=∠DAC+∠CAB=60º+30º=90º=∠EGF
∠AFD=∠GFE
∴⊿AFD≌⊿GFE(AAS)
∴DF=EF
∴F是DE的中点
过E点作EG⊥AB,交AB于G
∵⊿ABE是等边三角形,根据三线合一,EG是中线
∴AG=BG=½AB
∵∠ACB=90°,∠BAC=30°
∴BC=½AB【30º角所对的直角边等于斜边的一半】
∴BG=BC
∵∠ACB=∠ECB=90º,
∠GBE =∠CBA=60º
∴⊿ACB ≌⊿EGB(AAS)
∴AC=EG
∵AD=AC
∴AD=EG
又∵∠DAF=∠DAC+∠CAB=60º+30º=90º=∠EGF
∠AFD=∠GFE
∴⊿AFD≌⊿GFE(AAS)
∴DF=EF
∴F是DE的中点
展开全部
改了点
证明:
过E点作EG⊥AB,交AB于G
∵⊿ABE是等边三角形,根据三线合一,EG是中线
∴AG=BG=½AB
∵∠ACB=90°,∠BAC=30°
∴BC=½AB
∴BG=BC
∵∠ACB=∠EgB=90º,
∠GBE =∠CBA=60º
∴△ACB ≌△EGB(AAS)
∴AC=EG
∵AD=AC
∴AD=EG
又∵∠DAF=∠DAC+∠CAB=60º+30º=90º=∠EGF
∠AFD=∠GFE
∴⊿AFD≌⊿GFE(AAS)
∴DF=EF
∴F是DE的中点
这样就对了
证明:
过E点作EG⊥AB,交AB于G
∵⊿ABE是等边三角形,根据三线合一,EG是中线
∴AG=BG=½AB
∵∠ACB=90°,∠BAC=30°
∴BC=½AB
∴BG=BC
∵∠ACB=∠EgB=90º,
∠GBE =∠CBA=60º
∴△ACB ≌△EGB(AAS)
∴AC=EG
∵AD=AC
∴AD=EG
又∵∠DAF=∠DAC+∠CAB=60º+30º=90º=∠EGF
∠AFD=∠GFE
∴⊿AFD≌⊿GFE(AAS)
∴DF=EF
∴F是DE的中点
这样就对了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询