y=x.cosx怎么求周期?

 我来答
亓官燕子怀杉
2020-04-16 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:30%
帮助的人:698万
展开全部
反证法
先设f(x)
=
y
=
xcosx,
且为周期函数,现来推出矛盾。
由周期函数的性质,存在一个t>0,
对任意的x都有f(x+t)=f(x)。
特别的当x=0时有,f(0+t)
=
f(0),即
tcost
=
0cos0
=
0.
注意到t为正数,则有cost
=
0
,

t
=
kpi
+
pi/2
,
其中pi表示圆周率
k为整数。也就是说周期t必然是这样的形式。
现在,我们只须要说明
t
=
kpi
+
pi/2
不可能是函数的周期就行了。如若不然。那么就有
f(x
+
kpi
+
pi/2)
=
f(x),对任意的x成立。
代入简单用诱导公式计算一下,可以得到矛盾。
从而得证。
由于不知道怎么输入符号,写得不详细,请原谅。
季绿柳鄞玥
2019-12-14 · TA获得超过3万个赞
知道小有建树答主
回答量:9860
采纳率:29%
帮助的人:708万
展开全部
证明:假设y=xcosx是周期函数,
因为周期函数有f(x+T)=f(x)
xcosx=(x+T)cos(x+T)=xcosx*cosT-xsinx*sinT+Tcosx*cosT-Tsinx*sinT
所以cosT=1
T=kπ/2
-xsinx*sinT+Tcosx*cosT-Tsinx*sinT=0
-xsinx*sinT-Tsinx*sinT=0
(x+T)sinx*sinT=0
只能是sinT=0
T=kπ和T=kπ/2矛盾
所以不是周期函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式