数列an=1/n^2,证明Sn<5/3 利用放缩。。。
2个回答
展开全部
n=1时:S1=1<5/3
n=2时:S2=5/4<5/3
n≧3时:
Sn=1/1²+1/2²+1/3²+1/4²+·········+1/(n-2)²+1/(n-1)²+1/n²
<1+1/2²+1/(2×4)+1/(3×5)········+1/[(n-3)(n-1)]+1/[(n-2)n]+1/[(n-1)(n+1)]
=1+1/4+½[1/2-1/4+1/3-1/5···············+1/(n-3)-1/(n-1)+1/(n-2)-1/n+1/(n-1)-1/(n+1)]
=1+1/4+½[1/2+1/3-1/n-1(n+1)]
<1+1/4+½×5/6=5/3
即得证:Sn<5/3
说明:当从第二项开始放大后,得出结论Sn<7/4 而7/4>5/3
说明在放缩时放的过于大了,则应适当的往后挪,适当缩小即可。
n=2时:S2=5/4<5/3
n≧3时:
Sn=1/1²+1/2²+1/3²+1/4²+·········+1/(n-2)²+1/(n-1)²+1/n²
<1+1/2²+1/(2×4)+1/(3×5)········+1/[(n-3)(n-1)]+1/[(n-2)n]+1/[(n-1)(n+1)]
=1+1/4+½[1/2-1/4+1/3-1/5···············+1/(n-3)-1/(n-1)+1/(n-2)-1/n+1/(n-1)-1/(n+1)]
=1+1/4+½[1/2+1/3-1/n-1(n+1)]
<1+1/4+½×5/6=5/3
即得证:Sn<5/3
说明:当从第二项开始放大后,得出结论Sn<7/4 而7/4>5/3
说明在放缩时放的过于大了,则应适当的往后挪,适当缩小即可。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询