若lim[2n+(an^2+2n+1)/(bn+1)=1,则a+b

fin3574
高粉答主

2011-10-28 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134612

向TA提问 私信TA
展开全部
lim(n->inf) [2n + (an² + 2n + 1) / (bn + 1)] = 1
lim (2bn² + an² + 4n + 1) / (bn + 1) = 1
lim [(2b + a)n² + 4n + 1] / (bn + 1) = 1
2b + a = 0,∵极限趋向常数,分子和分母的最高次方相同,都是n的一次方
lim (4n + 1) / (bn + 1) = 1
lim (4 + 1/n) / (b + 1/n) = 1
(4 + 0) / (b + 0) = 1
b = 4
a = -2b = -8
∴a + b = -8 + 4 = -4
muwei080
2011-10-27 · 超过10用户采纳过TA的回答
知道答主
回答量:262
采纳率:100%
帮助的人:91.9万
展开全部
若lim(2n (an^2-2n 1)/(bn 2))=1 求a/b的值 纠正一下:你lim(2n 1)/(bn 2))=1 上下除以2 则lim(2 1/n)/(b 2/n)=1 则
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
SEADOVE
2011-10-27 · TA获得超过120个赞
知道小有建树答主
回答量:193
采纳率:0%
帮助的人:135万
展开全部
表述好像有点不清楚
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式