如何求证关于数列极限性质保号性证明 ?
综述:保号性是指定义域在一定范围内时(可以认为是在极其微小的的一段区间里),其函数值要么都为正,要么都为负,即如果已知f(x1)>0,则存在包含x1的微小的区间,其f(x)均大于0。
而你说的数列极限的保号性其实是函数极限保号性的一种特例。即自变量不再是x,而是n,即自然数。但是也有一种特例,比如an=(-1)^n×(1/n)。
它的极限是0,但的an是一正一负交替出现,所以没有保号性。
终上所述,如果极限非0,则保号性存在,你可以理解为一个函数(数列)极限的正负号确定,那么它周围非常小的区间内都和它是同号的;如果极限的0,且函数(数列)是一正一负交替的,则无保号性。说得比较通俗,希望你理解。
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。
数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中。
此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。