利用初等变化求逆矩阵原理是什么?

 我来答
哆啦休闲日记
高粉答主

2021-10-14 · 关注我不会让你失望
知道小有建树答主
回答量:2479
采纳率:100%
帮助的人:39.8万
展开全部

如下:

初等行变换

定义:所谓数域P上矩阵的初等行变换是指下列3种变换:

1)以P中一个非零的数乘矩阵的某一行。

2)把矩阵的某一行的c倍加到另一行,这里c是P中的任意一个数。

3)互换矩阵中两行的位置。

一般来说,一个矩阵经过初等行变换后就变成了另一个矩阵,当矩阵A经过初等行变换变成矩阵B时,一般写作。

可以证明:任意一个矩阵经过一系列初等行变换总能变成阶梯型矩阵。

定理:

(1)逆矩阵的唯一性。

若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1。

(2)n阶方阵A可逆的充分必要条件是r(A)=m。

对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵

(3)任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵

推论 满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式