sin的取值范围是多少?
1个回答
展开全部
[-1,1]。
sin和cos自变量的取值范围均为全体实数,因为对于单位圆中与任意角的交点都有确定的横纵坐标;tan的自变量取值范围为x≠kπ+π/2(k∈z),因为当角度为kπ+π/2(k∈z)时任意角的边与直线x=1和直线x=-1均没有交点。sin和cos函数值的取值范围为[-1,1]。
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询