求不定积分∫ lnx / x^1/2 dx
1个回答
展开全部
∫ lnx / x^1/2 dx
=2∫lnxd[x^(1/2)],利用分步积分得到:
=2lnx*x^(1/2)-2∫x^(1/2)dlnx
=2x^(1/2)lnx-2∫x^(1/2)/x dx
=2x^(1/2)lnx-2∫x^(-1/2)dx
=2x^(1/2)lnx-4x^(1/2)+c
=2∫lnxd[x^(1/2)],利用分步积分得到:
=2lnx*x^(1/2)-2∫x^(1/2)dlnx
=2x^(1/2)lnx-2∫x^(1/2)/x dx
=2x^(1/2)lnx-2∫x^(-1/2)dx
=2x^(1/2)lnx-4x^(1/2)+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询