求曲线X^(2/3)在-1到8之间的弧长,要有过程
2个回答
展开全部
弧长s=∫√(1+y'²)*dx
y=X^(2/3) y'=2/3*X^(-1/3) y'²=4/9*X^(-2/3)
因导数在0处不存在,分两段
∴弧长s=∫[-1,8]√(1+y'²)*dx=∫[-1,0)√(1+y'²)*dx+∫(0,8]√(1+y'²)*dx=s1+s2
令x=t^3,则t=x^(1/3),dx=3t^2dt,y'²=4/9*X^(-2/3)=4/9*t^(-2)
对于每一段,均有
s=∫√(1+y'²)*dx
=∫√(1+4/9*t^(-2))*3t^2dt
=∫1/|3t|*√(9t^2+4)*3t^2dt
=±∫√(9t^2+4)*tdt (当t>0时取+,t<0时取-)
=±1/18∫√(9t^2+4)d(9t^2+4)
=±1/18*(9t^2+4)^(3/2)/(3/2)+C
=±1/27*(9t^2+4)^(3/2)+C
=±(t^2+4/9)^(3/2)+C
∴当-1≤x<0时,有-1≤t<0
∴s1=[-(t^2+4/9)^(3/2)] t∈[-1,0)
=-(4/9)^(3/2)+(1+4/9)^(3/2)
∴当0<x≤8时,有0<t≤2
∴s2=[(t^2+4/9)^(3/2)] t∈(0,2]
=(2^2+4/9)^(3/2)-(4/9)^(3/2)
∴s=s1+s2
=-(4/9)^(3/2)+(1+4/9)^(3/2)+(2^2+4/9)^(3/2)-(4/9)^(3/2)
=[13^(3/2)+40^(3/2)-16]/3^3
≈10.51
积分有点难,最麻烦的倒是后面算数值
希望对你有帮助
y=X^(2/3) y'=2/3*X^(-1/3) y'²=4/9*X^(-2/3)
因导数在0处不存在,分两段
∴弧长s=∫[-1,8]√(1+y'²)*dx=∫[-1,0)√(1+y'²)*dx+∫(0,8]√(1+y'²)*dx=s1+s2
令x=t^3,则t=x^(1/3),dx=3t^2dt,y'²=4/9*X^(-2/3)=4/9*t^(-2)
对于每一段,均有
s=∫√(1+y'²)*dx
=∫√(1+4/9*t^(-2))*3t^2dt
=∫1/|3t|*√(9t^2+4)*3t^2dt
=±∫√(9t^2+4)*tdt (当t>0时取+,t<0时取-)
=±1/18∫√(9t^2+4)d(9t^2+4)
=±1/18*(9t^2+4)^(3/2)/(3/2)+C
=±1/27*(9t^2+4)^(3/2)+C
=±(t^2+4/9)^(3/2)+C
∴当-1≤x<0时,有-1≤t<0
∴s1=[-(t^2+4/9)^(3/2)] t∈[-1,0)
=-(4/9)^(3/2)+(1+4/9)^(3/2)
∴当0<x≤8时,有0<t≤2
∴s2=[(t^2+4/9)^(3/2)] t∈(0,2]
=(2^2+4/9)^(3/2)-(4/9)^(3/2)
∴s=s1+s2
=-(4/9)^(3/2)+(1+4/9)^(3/2)+(2^2+4/9)^(3/2)-(4/9)^(3/2)
=[13^(3/2)+40^(3/2)-16]/3^3
≈10.51
积分有点难,最麻烦的倒是后面算数值
希望对你有帮助
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询