已知sinα+3cosα=2,则sinα-cosα/sinα+cosα
展开全部
sinα+3cosα=2,
∵cosα≠0,两边同除以cosα,
∴tanα+3=2/cosα=2secα,
两边平方,
(tanα)^2+6tan+9=4(secα)^2=4(tanα)^2+4,
3(tanα)^2-6tanα-5=0,
令tanα=t,
3t^2-6t-5=0,
t=(3±2√6),
tanα=3±2√6,
(sinα-cosα)/(sinα+cosα)=(tanα-1)/(tanα+1)
=(3±2√6-1)/(3±2√6+1),
则(sinα-cosα)/(sinα+cosα)=(2+2√6)/(4+2√6)=(4-√6)/2
或:=(2-2√6)/(4-2√6)=(2+√6)/2。
=(2±2√6)/(4±2√6).
∵cosα≠0,两边同除以cosα,
∴tanα+3=2/cosα=2secα,
两边平方,
(tanα)^2+6tan+9=4(secα)^2=4(tanα)^2+4,
3(tanα)^2-6tanα-5=0,
令tanα=t,
3t^2-6t-5=0,
t=(3±2√6),
tanα=3±2√6,
(sinα-cosα)/(sinα+cosα)=(tanα-1)/(tanα+1)
=(3±2√6-1)/(3±2√6+1),
则(sinα-cosα)/(sinα+cosα)=(2+2√6)/(4+2√6)=(4-√6)/2
或:=(2-2√6)/(4-2√6)=(2+√6)/2。
=(2±2√6)/(4±2√6).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询