把下列三角函数值从小到大排列起来:sin4/5π,-cos5/4π,sin32/5π,cos5/12π。
展开全部
由于[-π/2,π/2]是函数y=sinx的一个单调增区间,[π/2,3π/2]为函数y=sinx的一个单调减区间,可以把上面几个函数化为一个区间内的函数再比较其大小
sin(4π/5)=sin(π-4π/5)=sin(π/5)
-cos(5π/4)=-sin(π/2-5π/4)=-sin(-3π/4)=sin(3π/4)=sin(π-3π/4)=sin(π/4)
sin(32π/5)=sin(6π+2π/5)=sin(2π/5)
cos(5π/12)=sin(π/2-5π/12)=sin(π/12)
因为-π/2<π/12<π/5<π/4<2π/5<π/2 (即—30π/60<5π/60<12π/60<15π/60<24π/60<30π/60)
[-π/2,π/2]是函数y=sinx的一个单调增区间,所以sin(π/12)<sin(π/5)<sin(π/4)<sin(2π/5)
即它们从小到大排列为cos(5π/12),sin(4π/5),-cos(5π/4),sin(32π/5)
sin(4π/5)=sin(π-4π/5)=sin(π/5)
-cos(5π/4)=-sin(π/2-5π/4)=-sin(-3π/4)=sin(3π/4)=sin(π-3π/4)=sin(π/4)
sin(32π/5)=sin(6π+2π/5)=sin(2π/5)
cos(5π/12)=sin(π/2-5π/12)=sin(π/12)
因为-π/2<π/12<π/5<π/4<2π/5<π/2 (即—30π/60<5π/60<12π/60<15π/60<24π/60<30π/60)
[-π/2,π/2]是函数y=sinx的一个单调增区间,所以sin(π/12)<sin(π/5)<sin(π/4)<sin(2π/5)
即它们从小到大排列为cos(5π/12),sin(4π/5),-cos(5π/4),sin(32π/5)
展开全部
这个,都忘了!!!
追问
求求大家,帮我个忙嘛!谢谢了!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由于[-π/2,π/2]是函数y=sinx的一个单调增区间,[π/2,3π/2]为函数y=sinx的一个单调减区间,可以把上面几个函数化为一个区间内的函数再比较其大小
sin(4π/5)=sin(π-4π/5)=sin(π/5)
-cos(5π/4)=-sin(π/2-5π/4)=-sin(-3π/4)=sin(3π/4)=sin(π-3π/4)=sin(π/4)
sin(32π/5)=sin(6π+2π/5)=sin(2π/5)
cos(5π/12)=sin(π/2-5π/12)=sin(π/12)
因为-π/2<π/12<π/5<π/4<2π/5<π/2
(即—30π/60<5π/60<12π/60<15π/60<24π/60<30π/60)
[-π/2,π/2]是函数y=sinx的一个单调增区间,所以sin(π/12)<sin(π/5)<sin(π/4)<sin(2π/5)
即它们从小到大排列为cos(5π/12),sin(4π/5),-cos(5π/4),sin(32π/5)
sin(4π/5)=sin(π-4π/5)=sin(π/5)
-cos(5π/4)=-sin(π/2-5π/4)=-sin(-3π/4)=sin(3π/4)=sin(π-3π/4)=sin(π/4)
sin(32π/5)=sin(6π+2π/5)=sin(2π/5)
cos(5π/12)=sin(π/2-5π/12)=sin(π/12)
因为-π/2<π/12<π/5<π/4<2π/5<π/2
(即—30π/60<5π/60<12π/60<15π/60<24π/60<30π/60)
[-π/2,π/2]是函数y=sinx的一个单调增区间,所以sin(π/12)<sin(π/5)<sin(π/4)<sin(2π/5)
即它们从小到大排列为cos(5π/12),sin(4π/5),-cos(5π/4),sin(32π/5)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询