正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于F
(1)求证OE=OF。(2)对上述命题,若点E在AC的延长线上,如图②所示,AG⊥EB交EB的延长线G,AG的延长线交DB的延长线F,其他条件不变,则结论“OE=OF”还...
(1)求证OE=OF。
(2)对上述命题,若点E在AC的延长线上,如图②所示,AG⊥EB交EB的延长线G,AG的延长线交DB的延长线F,其他条件不变,则结论“OE=OF”还成立吗?若成立,请给出证明;若不成立,请说明理由。(详细过程) 展开
(2)对上述命题,若点E在AC的延长线上,如图②所示,AG⊥EB交EB的延长线G,AG的延长线交DB的延长线F,其他条件不变,则结论“OE=OF”还成立吗?若成立,请给出证明;若不成立,请说明理由。(详细过程) 展开
展开全部
如图1:正方形ABCD的对角线AC、BD相交于点O,E是AC上的一点,连接EB,过点A作AM⊥BE,垂足M,AM交BD于点F
(1)求证OE=OF
(2)如图2所示,若点E在AC的延长线上,AM⊥EB的延长线于点M,交DB的延长线于点F,其他条件都不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由
(1)证明:∵四边形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO.
∴Rt△BOE≌Rt△AOF.
∴OE=OF.
(2)解:OE=OF成立.
证明:∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠F+∠MBF=90°,
∠E+∠OBE=90°,
又∵∠MBF=∠OBE,
∴∠F=∠E.
∴Rt△BOE≌Rt△AOF.
∴OE=OF.
(1)求证OE=OF
(2)如图2所示,若点E在AC的延长线上,AM⊥EB的延长线于点M,交DB的延长线于点F,其他条件都不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由
(1)证明:∵四边形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO.
∴Rt△BOE≌Rt△AOF.
∴OE=OF.
(2)解:OE=OF成立.
证明:∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠F+∠MBF=90°,
∠E+∠OBE=90°,
又∵∠MBF=∠OBE,
∴∠F=∠E.
∴Rt△BOE≌Rt△AOF.
∴OE=OF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:因为是正方形,对角线AC、BD交于O
所以AC⊥BD,OA=OB,∠BAD=∠ABC
所以∠AOF=∠BOE=90°,∠FAO=∠OBE
所以△AOF和△BOE全等。
所以OE=OF
所以AC⊥BD,OA=OB,∠BAD=∠ABC
所以∠AOF=∠BOE=90°,∠FAO=∠OBE
所以△AOF和△BOE全等。
所以OE=OF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询