设f(α)=[2sin(π+α)cos(π-α)-cos(π+α)]/[(1+sin^2α+sin(π-α)-cos^2(π-α),求f(-23π/6)的值
1个回答
展开全部
f(α)=[2sin(π+α)cos(π-α)-cos(π+α)]/[(1+sin^2α+sin(π-α)-cos^2(π-α)
=[2sinαcosα+cosα]/[1+sin²α+sinα-cos²α]
=[cosα(2sinα+1)]/[2sin²α+sinα)
=[cosα(2sinα+1)]/[sinα(2sinα+1)]
=cosα/sinα
=cotα
f(-23π/6)=cot(-23π/6)
=cot(4π-23π/6)
=cot(π/6)
=√3
=[2sinαcosα+cosα]/[1+sin²α+sinα-cos²α]
=[cosα(2sinα+1)]/[2sin²α+sinα)
=[cosα(2sinα+1)]/[sinα(2sinα+1)]
=cosα/sinα
=cotα
f(-23π/6)=cot(-23π/6)
=cot(4π-23π/6)
=cot(π/6)
=√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询