y'(e^(x+y)+e^y)=e^(x+y)-e^x微分方程通解
2个回答
展开全部
y'[e^y(1+e^x)]=e^x(e^y-1) (1)
y' [e^y / (e^y - 1)] = e^x / (1 + e^x)
e^y dy / (e^y - 1) = e^x dx / (1 + e^x)
∫ d e^y / (e^y - 1) = ∫ d e^x / (1 + e^x)
ln (e^y - 1) = ln (1 + e^x) + c1
e^y - 1 = c2(1 + e^x)
e^y = 1 + c2(1 + e^x)
y(x) = ln (ce^x + c + 1) (2)
如果给定初始条件:y(x0) = y0
那么:c = (e^y0 -1)/(e^x0 + 1)
(2) 为(1)的通解。
∫
y' [e^y / (e^y - 1)] = e^x / (1 + e^x)
e^y dy / (e^y - 1) = e^x dx / (1 + e^x)
∫ d e^y / (e^y - 1) = ∫ d e^x / (1 + e^x)
ln (e^y - 1) = ln (1 + e^x) + c1
e^y - 1 = c2(1 + e^x)
e^y = 1 + c2(1 + e^x)
y(x) = ln (ce^x + c + 1) (2)
如果给定初始条件:y(x0) = y0
那么:c = (e^y0 -1)/(e^x0 + 1)
(2) 为(1)的通解。
∫
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询