
判断函数y=1/(x+1)在定义域上的单调性,并加以证明
1个回答
展开全部
单调递减
【证明】设x1<x2
y1-y2=1/(x1+1)-1/(x2+1)=(x2-x1)/[(x1+1)(x2+1)]
(1)当x1<x2<﹣1时,x1+1<0 x2+1<0 x2-x1>0 ∴y1-y2>0即y1>y2
(2)当﹣1<x1<x2时,x1+1>0 x2+1>0 x2-x1>0 ∴y1-y2>0即y1>y2
∴y1>y2
∴y=1/(x+1)在定义域上的单调递减
【证明】设x1<x2
y1-y2=1/(x1+1)-1/(x2+1)=(x2-x1)/[(x1+1)(x2+1)]
(1)当x1<x2<﹣1时,x1+1<0 x2+1<0 x2-x1>0 ∴y1-y2>0即y1>y2
(2)当﹣1<x1<x2时,x1+1>0 x2+1>0 x2-x1>0 ∴y1-y2>0即y1>y2
∴y1>y2
∴y=1/(x+1)在定义域上的单调递减
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询