已知x,y,z是正实数,求证:x/yz+y/zx+z/xy>=1/x+1/y+2/z

dzrr123456
2011-12-01 · TA获得超过7138个赞
知道大有可为答主
回答量:1522
采纳率:100%
帮助的人:511万
展开全部
因为x,y,z是正实数,所以x²+y²≥2xy,x²+z²≥2xz,y²+z²≥2yz, xyz>0
x²+y²+z²≥xy+xz+yz
所以:(x²+y²+z²)/xyz≥(xy+xz+yz)/xyz
x/yz+y/zx+z/xy>=1/x+1/y+2/z
慕野清流
2011-12-01 · TA获得超过3.6万个赞
知道大有可为答主
回答量:5141
采纳率:80%
帮助的人:2326万
展开全部
两边乘以xyz,证明x^2+y^2+z^2>=xy+yz+xz,就是证明(x-y)^2+(y-z)^2+(z-x)^2>=0后边是1/z
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式