设a>0,b>0且ab-a-b-1大于等于0,则a+b的取值范围是

设a>0,b>0且ab-a-b-1大于等于0,则a+b的取值范围是... 设a>0,b>0且ab-a-b-1大于等于0,则a+b的取值范围是 展开
2010zzqczb
2011-12-03 · TA获得超过5.2万个赞
知道大有可为答主
回答量:2.1万
采纳率:80%
帮助的人:6250万
展开全部
ab-a-b-1大于等于0,即ab>=(a+b)+1。
由均值不等式知 [(a+b)/2]^2>=ab
所以[(a+b)/2]^2>=(a+b)+1
解关于a+b的不等式得到所以a+b≥2(√2+1)或a+b≤2(1-√2)(舍),
所以a+b≥2(√2+1)
富港检测技术(东莞)有限公司_
2024-03-25 广告
ASTM D4169-16标准是运用实际物流案例中具有代表性的和经过实践证明的一种试验方法,ASTM D4169-16有18个物流分配周期、10个危险因素和3个等级测试强度。10个危险因素分别为:A人工和机械操作(跌落、冲击和稳定性)、B仓... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
zqs626290
2011-12-03 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.6万
采纳率:66%
帮助的人:5777万
展开全部
∵ab-a-b-1≥0
∴b(a-1)≥a+1
结合a>0, b>0, a+1>0
可知,a-1>0
∴b≥(a+1)/(a-1)
又(a+1)/(a-1)=[(a-1)+2]/(a-1)=1+[2/(a-1)]
∴(a+b)-2≥(a-1)+[2/(a-1)]≥2√2 (这一步用了基本不等式:x+y≥2√(xy))
∴恒有(a+b)-2≥2√2
∴a+b≥2+2√2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
佳妙佳雨
2011-12-03 · TA获得超过1.1万个赞
知道大有可为答主
回答量:2851
采纳率:100%
帮助的人:1225万
展开全部
因为ab-(a+b)≥1,所以ab≥(a+b)+1,
又因为2√ab≤a+b,所以ab≤[(a+b)/2]^2,
所以[(a+b)/2]^2≥(a+b)+1,
设(a+b)=x,则x^2/4-x-1≥0,即x^2-4x-4≥0,
所以x≥2(√2+1)或x≤2(1-√2),
又因为a+b>0,所以a+b≥2(√2+1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式