已知cos[(π/3)+α]=-3/5, sin(2π/3-β)=5/13,且0<α<π/2<β<π,求cos(β-α)的值.……
已知cos[(π/3)+α]=-3/5,sin(2π/3-β)=5/13,且0<α<π/2<β<π,求cos(β-α)的值.需要解和过程,最重要的是分析。...
已知cos[(π/3)+α]=-3/5, sin(2π/3-β)=5/13,且0<α<π/2<β<π,求cos(β-α)的值.
需要解和过程,最重要的是分析。 展开
需要解和过程,最重要的是分析。 展开
5个回答
展开全部
∵0<a<π/2<b<π
∴-π/3<(2π/3)-b<π/6
结合题设
cos[(π/3)+a]=-3/5<0
sin[(2π/3)-b]=5/13>0
可知:π/2<(π/3)+a<π
0<(2π/3)-b<π/6
∴cos[(π/3)+a]=-3/5
sin[(π/3)+a]=4/5
sin[(2π/3)-b]=5/13
cos[(2π/3)-b]=12/13
[[2]]
易知
π+(a-b)=[(π/3)+a]+[(2π/3)-b]
cos[π+(a-b)]=cos[(π/3)+a]cos[(2π/3)-b]-sin[(π/3)+a]sin[(2π/3)-b]
= (-3/5)×(12/13)-(4/5)×(5/13)
=-56/65
即cos[π+(a-b)]=-56/65
又cos[π+(a-b)]=-cos(a-b)=-cos(b-a)
∴cos(b-a)=56/65
∴-π/3<(2π/3)-b<π/6
结合题设
cos[(π/3)+a]=-3/5<0
sin[(2π/3)-b]=5/13>0
可知:π/2<(π/3)+a<π
0<(2π/3)-b<π/6
∴cos[(π/3)+a]=-3/5
sin[(π/3)+a]=4/5
sin[(2π/3)-b]=5/13
cos[(2π/3)-b]=12/13
[[2]]
易知
π+(a-b)=[(π/3)+a]+[(2π/3)-b]
cos[π+(a-b)]=cos[(π/3)+a]cos[(2π/3)-b]-sin[(π/3)+a]sin[(2π/3)-b]
= (-3/5)×(12/13)-(4/5)×(5/13)
=-56/65
即cos[π+(a-b)]=-56/65
又cos[π+(a-b)]=-cos(a-b)=-cos(b-a)
∴cos(b-a)=56/65
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
0<α<π/2
π/3<α+π/3<π/2+π/3
π/3<α+π/3<5π/6
cos[(π/3)+α]=-3/5
sin[(π/3)+α]=4/5
sin(2π/3-β)=5/13
sin(π-π/3-β)=5/13
sin[π-(π/3+β)]=5/13
sin(π/3+β)=5/13
π/2<β<π
π/2+π/3<β+π/3<π+π/3
5π/6<β+π/3<4π/3
cos(π/3+β)=-12/13
cos(β-α)
=cos[(π/3+β)-(π/3+α)]
=cos(π/3+β)cos(π/3+α)+sin[(π/3+β)sin(π/3+α)
=-12/13*(-3/5)+4/5*5/13
=36/65+20/65
=56/65
π/3<α+π/3<π/2+π/3
π/3<α+π/3<5π/6
cos[(π/3)+α]=-3/5
sin[(π/3)+α]=4/5
sin(2π/3-β)=5/13
sin(π-π/3-β)=5/13
sin[π-(π/3+β)]=5/13
sin(π/3+β)=5/13
π/2<β<π
π/2+π/3<β+π/3<π+π/3
5π/6<β+π/3<4π/3
cos(π/3+β)=-12/13
cos(β-α)
=cos[(π/3+β)-(π/3+α)]
=cos(π/3+β)cos(π/3+α)+sin[(π/3+β)sin(π/3+α)
=-12/13*(-3/5)+4/5*5/13
=36/65+20/65
=56/65
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵β-α= π- { [(π/3)+α] + [2π/3-β]} 角度关系分析
∵cos[(π/3)+α]=-3/5, sin(2π/3-β)=5/13 0<α<π/2<β<π
∴sin[(π/3)+α]= 4/5 cos (2π/3-β)= 12/13
∴cos(β-α)=cos π- { [(π/3)+α] + [2π/3-β]}
= - cos { [(π/3)+α] + [2π/3-β]} 诱导公式
= - cos [(π/3)+α] *cos [2π/3-β] + sin [(π/3)+α]*sin [2π/3-β]}
= 3/5 * 12/13 +4/5 * 5 /13 =56/65
∵cos[(π/3)+α]=-3/5, sin(2π/3-β)=5/13 0<α<π/2<β<π
∴sin[(π/3)+α]= 4/5 cos (2π/3-β)= 12/13
∴cos(β-α)=cos π- { [(π/3)+α] + [2π/3-β]}
= - cos { [(π/3)+α] + [2π/3-β]} 诱导公式
= - cos [(π/3)+α] *cos [2π/3-β] + sin [(π/3)+α]*sin [2π/3-β]}
= 3/5 * 12/13 +4/5 * 5 /13 =56/65
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-12-03
展开全部
0<α<π/2,
则π/3<α+π/3<π/2+π/3,
则sin[(π/3)+α]=4/5.
π/2<β<π,
则-π/3<2π/3-β<π/6,
则cos(2π/3-β)=12/13.
cos(β-α)=cos(α-β)=cos[(π/3)+α+(2π/3-β)]
=cos(2π/3-β)cos(2π/3-β)-sin(2π/3-β)sin[(π/3)+α]=-56/65
则π/3<α+π/3<π/2+π/3,
则sin[(π/3)+α]=4/5.
π/2<β<π,
则-π/3<2π/3-β<π/6,
则cos(2π/3-β)=12/13.
cos(β-α)=cos(α-β)=cos[(π/3)+α+(2π/3-β)]
=cos(2π/3-β)cos(2π/3-β)-sin(2π/3-β)sin[(π/3)+α]=-56/65
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询