1/(x^4+1)的不定积分怎么求
展开全部
∫ dx/[x(1+x⁴)]
令u=x⁴,du=4x³ dx
原式= ∫ 1/[x*(1+u)] * du/(4x³)
= (1/4)∫ 1/[u(u+1)] du
= (1/4)∫ (u+1-u)/[u(u+1)] du
= (1/4)∫ [1/u - 1/(u+1)] du
= (1/4)(ln|u| - ln|u+1|) + C
= (1/4)ln|x^4| - (1/4)ln|x^4+1| + C
= ln|x| - (1/4)ln(x^4+1) + C
扩展资料
常见的不定积分的解法
利用基本公式计算
2.利用凑微分法计算。(看哪一项可以凑成另外一项的微分)
3.变量替代法(一般是用于带根号的情况下)
4.利用分部积分法计算。(积分中一部分可化成较简单微分,另一部分较复杂)
展开全部
∫dx/(x^4+1)=∫dx/[(x^2+1+x)(x^2+1-x)]
=(1/2)∫dx/x(x^2+1-x)-(1/2)∫dx/x(x^2+1+x)
∫dx/x(x^2+1-x)=∫[x^2-(x^2+1-x)]dx/[(x^2-x)(x^2-x+1)]
=∫xdx/[(x-1)(x^2-x+1)]-∫dx/(x^2-x)
=∫[(x^2-x+1)-(x-1)^2]dx/[(x-1)(x^2-x+1)]-∫dx/(x^2-x)
=∫dx/(x-1)-∫(x-1)dx/(x^2-x+1)-∫dx/(x-1)+∫dx/x
=-(1/2)∫d(x^2-x+1)/(x^2-x+1)-(1/2)∫dx/(x^2-x+1)+lnx
=(-1/2)ln(x^2-x+1)-(1/√3)arctan[(2x+1)/√3]+lnx
∫dx/x(x^2+x+1)=∫[(x^2+x+1)-x^2]dx/x(x+1)(x^2+x+1)
=∫dx/x(x+1)-∫xdx/(x+1)(x^2+x+1)
=∫dx/x(x+1)-∫[(x+1)^2-(x^2+x+1)]dx/(x+1)(x^2+x+1)
=∫dx/x(x+1)-∫(x+1)dx/(x^2+x+1)+∫dx/(x+1)
=lnx-(1/2)ln(x^2+x+1)-(1/√3)arctan[(2x+1)/√3]
∫dx/(1+x^4)=(1/4)ln[(x^2+x+1)/(x^2-x+1)]+(1/2√3)arctan(2x+1)/√3-(1/2√3)arctan[(2x-1)/√3]+C
=(1/2)∫dx/x(x^2+1-x)-(1/2)∫dx/x(x^2+1+x)
∫dx/x(x^2+1-x)=∫[x^2-(x^2+1-x)]dx/[(x^2-x)(x^2-x+1)]
=∫xdx/[(x-1)(x^2-x+1)]-∫dx/(x^2-x)
=∫[(x^2-x+1)-(x-1)^2]dx/[(x-1)(x^2-x+1)]-∫dx/(x^2-x)
=∫dx/(x-1)-∫(x-1)dx/(x^2-x+1)-∫dx/(x-1)+∫dx/x
=-(1/2)∫d(x^2-x+1)/(x^2-x+1)-(1/2)∫dx/(x^2-x+1)+lnx
=(-1/2)ln(x^2-x+1)-(1/√3)arctan[(2x+1)/√3]+lnx
∫dx/x(x^2+x+1)=∫[(x^2+x+1)-x^2]dx/x(x+1)(x^2+x+1)
=∫dx/x(x+1)-∫xdx/(x+1)(x^2+x+1)
=∫dx/x(x+1)-∫[(x+1)^2-(x^2+x+1)]dx/(x+1)(x^2+x+1)
=∫dx/x(x+1)-∫(x+1)dx/(x^2+x+1)+∫dx/(x+1)
=lnx-(1/2)ln(x^2+x+1)-(1/√3)arctan[(2x+1)/√3]
∫dx/(1+x^4)=(1/4)ln[(x^2+x+1)/(x^2-x+1)]+(1/2√3)arctan(2x+1)/√3-(1/2√3)arctan[(2x-1)/√3]+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询