求函数y=3sin(π/4-2x)的单调增区间并确定其值域。
1个回答
展开全部
因为y=sinx的单调增区间为[-π/2+2kπ,π/2+2kπ]k属于整数,,-π-4kπ<=-2x<=π-4kπ
,-π-4kπ+π/4<=-2x+π/4<=π-4kπ+π/4,,-3π/4-4kπ<=-2x+π/4<=-4kπ+5π/4,k属于整数
y=3sin(π/4-2x)的单调增区间为
[-3π/4-4kπ,-4kπ+5π/4],k属于整数
-1<=sin(π/4-2x)<=1,所以-3<=3sin(π/4-2x)<=3
所以值域为[-3,3]
希望对你有帮助
,-π-4kπ+π/4<=-2x+π/4<=π-4kπ+π/4,,-3π/4-4kπ<=-2x+π/4<=-4kπ+5π/4,k属于整数
y=3sin(π/4-2x)的单调增区间为
[-3π/4-4kπ,-4kπ+5π/4],k属于整数
-1<=sin(π/4-2x)<=1,所以-3<=3sin(π/4-2x)<=3
所以值域为[-3,3]
希望对你有帮助
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询