求积分∫1/(x+√1-x²)dx
1个回答
展开全部
∫1/(x+√1-x²)dx
做三角代换:令x=sint,则√1-x²=cost,dx=costdt
原式=∫cost/(sint+cost)dt=(1/2)∫ (cost+sint+cost-sint)/(sint+cost)dt
=(1/2)∫ (cost+sint)/(sint+cost)dt+(1/2)∫ (cost-sint)/(sint+cost)dt
=(1/2)∫ 1dt+(1/2)∫ 1/(sint+cost)d(sint+cost)
=(1/2)t+(1/2)ln|sint+cost|+C
=(1/2)arcsinx+(1/2)ln|x+√1-x²|+C
做三角代换:令x=sint,则√1-x²=cost,dx=costdt
原式=∫cost/(sint+cost)dt=(1/2)∫ (cost+sint+cost-sint)/(sint+cost)dt
=(1/2)∫ (cost+sint)/(sint+cost)dt+(1/2)∫ (cost-sint)/(sint+cost)dt
=(1/2)∫ 1dt+(1/2)∫ 1/(sint+cost)d(sint+cost)
=(1/2)t+(1/2)ln|sint+cost|+C
=(1/2)arcsinx+(1/2)ln|x+√1-x²|+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询