“自然定义域”是指完全由数学式子的性质所规定的定义域,没有任何外加的限制。
首先定义域都是针对函数来说的。当给出一个关于函数的数学概念,比如定义定理时都要先说明在什么空间里考虑。比如一个连续函数的导函数在实空间里不一定连续,可是一个连续函数的导函数在复空间里是一定连续的,这说明给出函数的数学概念首先就是要说明在什么空间里。
这个大前提现在可以给出答案蠢敏了,自然定义域就是给出了相应的大前提空间后,那些使这个函数在这个空间中取值有意义的点的全体集合。至于定义域就是有可能人为地对函数自变量规定后的自唯孙变量全体取值的集合。举个例子:在实数中,f(x)=x的自然定义域就是R,现在的定义域也是R。
自然定义域是一个数学名词。
函数的定义域通常按以下两种情形来确定:
一种是对有实际背景的函数,根据实际背景中的变量的实际意义确定。例如,在自由落体运动中,设物体下落的时间为t,下落的距离为s,开始下落的时刻t=0,落地的时刻t=T,则s与t之间带山枝的函数关系是S=1/2*gt^2,t∈[0,T]。
另一种是对抽象地用算式表达的函数,通常约定这种函数的定义域是使得算式有意义的一切实数组成的集合,这种定义域称为函数的自然定义域。在这种约定之下,一般的用算式表达的函数可用“y=f(x)”表达,而不在表出其定义域。例如,函数y=1/(1+x)的自然定义域是区间(-∞,-1)∪(-1,+∞)
以上内容参考:百度百科-自然定义域
“自然定义域”是指完全由数学式子的性质所规定的定义域,没有任何外加的限制。
首先定义域都是针对函数来说的。当给出一个关于函数的数学概念,比如定义源旁闹定理时都要先说明在什么空间里考虑。比如一个连续函数的导函数在实空间里不一定连续,可是一个连续函数的导函数在复空间里是一定连续的,这说明给出函数的数学概念首先就是要说明在什么空间里。
这个大前提现在可以给出答案了,自然定义域就是给出了相应的大前提启帆空间后,那些使这个函数在这个空间中取值有意义的点的全体集合。至于定义域就是有可能人为地对函数自变量规定后的自变量全体取值的集合。举个例子:在实数中,f(x)=x的自然定义域就是R,现在的定义域也是R。
扩展资料:
定义域指自变量x的取值范围,是函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。
设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,雹罩数集D称为这个函数的定义域。
参考资料来源:百度百科-定义域(数学物理化学名词)
定义域为自然域是是信轿对抽象地用算式表达的函数,通常约定这种函数的定义域是使得算式有意义的一切实数组成的集合,这种定义域称为函数的自然定义域(也叫自然域)。若函数的对应关系有解析表达式芹尺来表示,则使解析式有意义的自变量的取值范围称为自然定义域。
一种是对有实际背景的函数,根据实际背景中的变量的实际意义确定。例如,在自由落体运动中,设物体下落的时间为t,下落的距离为s,开始下落的时刻t=0,落地的时刻t=T,则s与t之间的函数关系是S=1/2*gt^2,t∈[0,T]。
扩展资料:
定义域是在数学中可以被看作为函数的所有输入值的集合。自然定义域是在数学中可以被看作为函数的所有自然数输入值的集合。
作为函数三要素(定义域、值域、对应法则)之一,自然域对应法则的作用对象。求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。嫌坦高
参考资料来源:百度百科-函数定义域
参考资料来源:百度百科-自然定义域
按以下两种情形来确定:
一种是对有实际背景的函数,根据实际背景中的变量的实际意戚悉义确定。
例如,在自由高岁乎落体运动中,设物体下落的时间为t,下落的距离为s,开始下落的时刻t=0,落地的时刻t=T,则s与t之间的函数关系是S=1/2*gt^2,t∈[0,T]。
另一种是对抽象地用算式表达的函数,通常约定这种函数的定义域是使得算式有意义的一雀肆切实数组成的集合,这种定义域称为函数的自然定义域。
在这种约定之下,一般的用算式表达的函数可用“y=f(x)”表达,而不在表出其定义域。例如,函数y=1/(1+x)的自然定义域是区间(-∞,-1)∪(-1,+∞)。
扩展资料:
设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。
定义二:A,B是两个非空数集,从集合A到集合B 的一个映射,叫做从集合A到集合B 的一个函数。 其中A就叫做定义域。通常,用字母D表示。通常定义域是F(X)中x的取值范围。
答:所谓“自然定义域”是指完全由数袭启学式子的性质所规定的定义域,这里没有任何外加的限拍耐如制;比如,y=log₂(x+1)的“自然定义域”就是x>-1;如果人为的规定x∈[5,10],这就不是自
然定义域了。
“判别式法主要适用于形如y=ax²+bx+c/Ax²+Bx+C的函数值域,其试用条件是(1)定义域为自然域(2)分子分母必须没有公因式”1为什么一定要自然域?2如y=x+2/x²+3x-6这种分母可能为0的函数值域怎么求?谢谢
判别式法主要适用于形如y=(ax²+bx+c)/(Ax²+Bx+C)的函数值域,其试用条件是(1)定义域为自然域;(2)分子分母必须没有公因式”;1。为什么一定要自然域?2。如y=(x+2)/(x²+3x-6)这种分母可能为0的函数值域怎么求?
答:1。二次函数的判别式就是在二次函数的定义域为R时才能有效,R就是二次函数的自然
定义域;如果有外加的人为干扰,判别式是否仍然有效就很难说了;因此当将判别式法扩展
到其它领域时当然要遵守这一规定;
2。求函数y=(x+2)/(x²+3x-6)的值域可以用判别式法:
yx²+3yx-6y=x+2,yx²+(3y-1)x-6y-2=0,∵ x∈R,故其判别式
Δ=(3y-1)²+4y(6y+2)=9y²-6y+1+24y²+8y=33y²+2y+1=33(y²+2y/33)+1
=33[(y+1/33)²-1/33²]+1=33(y+1/33)²-1/33+1
=33(y+1/33)²+32/33≧32/33>0,故y∈(-∞,+∞).
分母可能为零,没关系,当分母为0时反映在值域上就是y→∞.