1个回答
展开全部
令x=sinu,-π/2<=u<=π/2,则(1-x^2)^(1/2)=cosu,arcsinx=arcsin(sinu)=u
dx=cosudu
原式=∫ u(cosu)^2du=(1/2)∫ u(1+cos2u)du
=(1/2)∫ (u+ucos2u)du=(1/4)u^2+(1/4)∫ ud(sin2u)
=(1/4)u^2+(1/4)u*sin2u-(1/4)∫ sin2udu
=(1/4)u^2+(1/2)u*sinucosu+(1/8)cos2u+C
=(1/4)u^2+(1/2)u*sinucosu+(1/4)(1-2(sinu)^2)+C
=(1/4)(arcsinx)^2+(1/2)x√(1-x^2)*arcsinx+(1/4)(1-2x^2)+C
=(1/4)(arcsinx)^2+(1/2)x√(1-x^2)*arcsinx-(1/2)x^2+C1
dx=cosudu
原式=∫ u(cosu)^2du=(1/2)∫ u(1+cos2u)du
=(1/2)∫ (u+ucos2u)du=(1/4)u^2+(1/4)∫ ud(sin2u)
=(1/4)u^2+(1/4)u*sin2u-(1/4)∫ sin2udu
=(1/4)u^2+(1/2)u*sinucosu+(1/8)cos2u+C
=(1/4)u^2+(1/2)u*sinucosu+(1/4)(1-2(sinu)^2)+C
=(1/4)(arcsinx)^2+(1/2)x√(1-x^2)*arcsinx+(1/4)(1-2x^2)+C
=(1/4)(arcsinx)^2+(1/2)x√(1-x^2)*arcsinx-(1/2)x^2+C1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询