数学分析问题 设f为区间I上的单调函数.证明:若x0属于I为f的间断点,则x0必是f的第一类间断点.

可去间断点?第一类间断的条件左右极限都存在,可端点处只有单侧极限(即左端点有右极限,但没有左极限啊?右端点处有左极限,但没有右极限啊?)... 可去间断点?第一类间断的条件左右极限都存在,可端点处只有单侧极限(即左端点有右极限,但没有左极限啊?右端点处有左极限,但没有右极限啊?) 展开
李涵123123
推荐于2020-02-13 · TA获得超过271个赞
知道小有建树答主
回答量:103
采纳率:0%
帮助的人:143万
展开全部
首先来个严密的证明,若这个区间为开区间,则设函数f的间断点为X。,f在点X。可以没有定义,由于是间断点,则这个点满足间断点的前提条件:函数f在点X。的某个去心邻域内有定义,我们设这个去心邻域为(X。-δ。,X。)∪(X。,X。+δ。),设X1属于(X。,X。+δ。),则对于x属于(X。-δ。,X。),由f的单调性知,有f(x)<f(X1),则f(x)有上界,由上确界定理知f(x)有上确界,再由函数的单调有界定理知道f(X。-0)存在,同理可得f(X。+0)存在,左右极限都存在,这样X。就是第一类间断点了。
其次就是你要真正理解间断点的定义,如果区间是一个闭区间或者是半开半闭的,总之是有端点的,在这里,区间的端点都不是间断点,因为端点是不满足间断点定义的前提条件,端点只有一侧使f有定义,所以在定义域区间里面的端点跟孤立点都不能讨论间断性!这个是要弄清楚的,好好学习数学吧,数学很有趣的。
十紫稥釦
2011-12-12
知道答主
回答量:16
采纳率:0%
帮助的人:10.1万
展开全部
由于函数f单调函数,x0在区间I内。则函数x0出左极限与有极限相等。若x0是I的间断点,这此间断点为可去间断点。即属于第一类间断点
追问
可去间断点?第一类间断的条件左右极限都存在,可端点处只有单侧极限(即左端点有右极限,但没有左极限啊?右端点处有左极限,但没有右极限啊?)
追答
可去间断点可以用重新定义Xo处的函数值使新函数成为连续函数
一般不考虑端点处的间断点
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式