设a是实数,定义在R上的函数f(x)=a-2/2^x+1
2个回答
2011-12-14 · 知道合伙人教育行家
关注
展开全部
f(x)= a - 2/(2^x+1)
令x1<x2
f(x2)-f(x1)= [ a - 2/(2^x2+1) ] - [ a - 2/(2^x1+1) ]
= - 2/(2^x2+1) + 2/ (2^x1+1)
= (2^x2+1-2^x1-1)/[(2^x2+1)(2^x1+1)]
= (2^x2-2^x1)/[(2^x2+1)(2^x1+1)]
∵x2>x1,∴2^x2>2^x1,∴2^x2-2^x1>0
又:[(2^x2+1)(2^x1+1)]>0
∴f(x2)-f(x1)>0
即:f(x2)>f(x1) ,得证。
f(x)是奇函数,则f(-x) = -f(x)
a - 2/(2^(-x)+1) = -a + 2/(2^x+1)
2a = 2/(2^(-x)+1) + 2/(2^x+1)
2a = 2*2^x /(1+2^x) + 2/(2^x+1) = 2*(2^x+1)/(2^x+1) = 2
a = 1
令x1<x2
f(x2)-f(x1)= [ a - 2/(2^x2+1) ] - [ a - 2/(2^x1+1) ]
= - 2/(2^x2+1) + 2/ (2^x1+1)
= (2^x2+1-2^x1-1)/[(2^x2+1)(2^x1+1)]
= (2^x2-2^x1)/[(2^x2+1)(2^x1+1)]
∵x2>x1,∴2^x2>2^x1,∴2^x2-2^x1>0
又:[(2^x2+1)(2^x1+1)]>0
∴f(x2)-f(x1)>0
即:f(x2)>f(x1) ,得证。
f(x)是奇函数,则f(-x) = -f(x)
a - 2/(2^(-x)+1) = -a + 2/(2^x+1)
2a = 2/(2^(-x)+1) + 2/(2^x+1)
2a = 2*2^x /(1+2^x) + 2/(2^x+1) = 2*(2^x+1)/(2^x+1) = 2
a = 1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询