求与圆x^2+y^2-4x-8y+15=0相切与点P(3,6),且经过点Q(5,6)的圆的方程

自心何H
2011-12-16 · TA获得超过17.5万个赞
知道顶级答主
回答量:6.8万
采纳率:37%
帮助的人:3.9亿
展开全部
圆x^2+y^2-4x-8y+15=0即(x-2)^2+(y-4)^2=5其圆心为A(2,4)
设所求方程的圆的圆心为C
由于圆C过点P(3,6),Q(5,6)所以C点在直线x=4上,可设C点坐标为(4,b)
由于xP=(xA+xC)/2所以yP=(yA+yC)/2即6=(4+b)/2 所以b=8
所以圆C的圆心为C(4,8) 半径=2
圆C的方程是(x-4)^2+(y-8)^2=4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式