一、推导过程:
解:设C:((x^2)/(a^2))+((y^2)/(b^2))=1-----式1;
(a^2)-(b^2)=(c^2);
F1(-c,0);F2(c,0);P(xp,yp)
AB:(y-yp)=k(x-xp)=>y=kx+(yp-kxp);令m=yp-kxp=>AB:y=kx+m-----式2;
联立式1和式2消去y得:((k^2)+((b^2)/(a^2)))(x^2)+2kmx+((m^2)-(b^2))=0;
因为直线AB切椭圆C于点P,所以上式只有唯一解,则:
4((km)^2)-4((k^2)+((b^2)/(a^2)))((m^2)-(b^2))=0=>m^2=((ak)^2)+(b^2);
m^2=(yp-kxp)^2=((yp)^2)+((kxp)^2)-2kxpyp=((ak)^2)+(b^2);
=>((a^2)-(xp^2))(k^2)+2xpypk+((b^2)-(yp^2));
由根的判别式得:4((xpyp)^2)-4((a^2)-(xp^2))((b^2)-(yp^2))=0;
所以k值有唯一解:k=(-2xpyp)/(2((a^2)-(xp^2)))=-xpyp/((a^2)-(xp^2));
由式1得:(a^2)-(xp^2)=(ayp/b)^2=>k=-(xp(b^2))/(yp(a^2));
m=yp-kxp=(((ypa)^2)+((xpb)^2))/(yp(a^2))=((ab)^2)/(yp(a^2))=(b^2)/yp
二、椭圆上一点到焦点距离等于到x轴直线的距离。
三、
解:(((a^2)-xpc)^2)/(((a^2)+xpc)^2)=(((xp-c)^2)+(yp^2))/(((xp+c)^2)+(yp^2));
=>(((a^2)-xpc)^2)(((xp+c)^2)+(yp^2))=(((a^2)+xpc)^2)(((xp-c)^2)+(yp^2))
=>(((a^2)-xpc)^2)((xp+c)^2)+(((a^2)-xpc)^2)(yp^2)=(((a^2)+xpc)^2)((xp-c)^2)+(((a^2)+xpc)^2)(yp^2)
=>[(((a^2)-xpc)^2)((xp+c)^2)-(((a^2)+xpc)^2)((xp-c)^2)]=[(((a^2)+xpc)^2)-(((a^2)-xpc)^2)](yp^2)
∴过焦点与X轴垂直与椭圆相交的点坐标为(±c,b²/a )
扩展资料
性质:
1、把椭圆转动180度形成的立体图形,其内表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用,老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)。
2、设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB切椭圆C于点P,且A和B在直线上位于P的两侧,则∠APF1=∠BPF2。(也就是说,椭圆在点P处的切线即为∠F1PF2的外角平分线所在的直线)。
3、设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB为C在P点的法线,则AB平分∠F1PF2。
4、离心率越小越接近于圆,越大则椭圆就越扁。
5、椭圆的周长等于特定的正弦曲线在一个周期内的长度。
|PF1|²
=(x - c)² + y²
=[a²(x - c)² + a²y²]/a²
=[a²x² - 2a²cx + a²c² + a²y²]/a² /***--根据b²x² + a²y² = a²b² ***/
=[a²x² - 2a²cx + a²c² + a²b² - b²x²]/a²
=[(a²-b²)x² = 2a²cx + a²(b² + c²)]/a²
=[c²x² -2a²cx + a^4]/a²
=(a² - cx)²/a²
∴PF1 = (a² - cx)/a = a - (c/a)x = a - ex
同理可证:PF2 = a + ex
第二个应该是椭圆上一动点到左(右)焦点的距离与到左(右)准线的距离之比为离心率
过焦点与X轴垂直与椭圆相交的点坐标(焦点在x轴上):
∵过焦点
∴它的横坐标为(±c,0)
∵通径长为2b²/a
∴过焦点与X轴垂直与椭圆相交的点坐标为(±c,b²/a )
=(x - c)² + y²
=[a²(x - c)² + a²y²]/a²
=[a²x² - 2a²cx + a²c² + a²y²]/a² /***--根据b²x² + a²y² = a²b² ***/
=[a²x² - 2a²cx + a²c² + a²b² - b²x²]/a²
=[(a²-b²)x² = 2a²cx + a²(b² + c²)]/a²
=[c²x² -2a²cx + a^4]/a²
=(a² - cx)²/a²
∴PF1 = (a² - cx)/a = a - (c/a)x = a - ex