初三数学抛物线题!
抛物线y=ax²+bx+3与y轴交于点C,与x轴交于A,B两点,tan∠OCA=1/3,S△ABC=6.求(1)点B的坐标(2)抛物线的解析式和顶点坐标...
抛物线y=ax²+bx+3与y轴交于点C,与x轴交于A,B两点,tan∠OCA=1/3,S△ABC=6.
求(1)点B的坐标
(2)抛物线的解析式和顶点坐标 展开
求(1)点B的坐标
(2)抛物线的解析式和顶点坐标 展开
3个回答
展开全部
(1)抛物线y=ax²+bx+3与y轴交于点C,则C(0, 3),OC=3,
∵tan∠OCA=OA/OC=1/3,
∴OA=1,
∴A点的坐标是(1, 0)
∵S△ABC=½×AB×OC=6.
∴½×AB×3=6
AB=4,
∴B点坐标是(-3, 0)或(5, 0)
(2)当B点坐标为(-3, 0),由于抛物线过A(1, 0)、C(0, 3),
可求其解析式是y=-x²-2x+3,顶点坐标是(1, 4)
当B点坐标是(5, 0),由于抛物线过点A(1, 0)、C(0, 3),
可求其解析式是y=(3/5)x²-(18/5)x+3,顶点坐标是(3, -12/5)
∵tan∠OCA=OA/OC=1/3,
∴OA=1,
∴A点的坐标是(1, 0)
∵S△ABC=½×AB×OC=6.
∴½×AB×3=6
AB=4,
∴B点坐标是(-3, 0)或(5, 0)
(2)当B点坐标为(-3, 0),由于抛物线过A(1, 0)、C(0, 3),
可求其解析式是y=-x²-2x+3,顶点坐标是(1, 4)
当B点坐标是(5, 0),由于抛物线过点A(1, 0)、C(0, 3),
可求其解析式是y=(3/5)x²-(18/5)x+3,顶点坐标是(3, -12/5)
展开全部
1、
C点坐标(0,3),即OC=3
tan∠OCA=OA/OC=1/3
所以OA=OC*1/3=3*1/3=1,A点坐标(1,0)或(1,0)
S△ABC=1/2*AB*OC=6
所以AB=2*6/OC=4
OB=OA+AB=5,当A(1,0)时,B(5,0);当A(-1,0)时,B(-5,0)
或OB=AB-OA=3,当A(1,0)时,B(-3,0);当A(-1,0)时,B(3,0)
2、
把4组A、B坐标分别代入y=ax²+bx+3
得:
a=3/5,b=-18/5
a=3/5,b=18/5
a=-1,b=-2
a=-1,b=2
C点坐标(0,3),即OC=3
tan∠OCA=OA/OC=1/3
所以OA=OC*1/3=3*1/3=1,A点坐标(1,0)或(1,0)
S△ABC=1/2*AB*OC=6
所以AB=2*6/OC=4
OB=OA+AB=5,当A(1,0)时,B(5,0);当A(-1,0)时,B(-5,0)
或OB=AB-OA=3,当A(1,0)时,B(-3,0);当A(-1,0)时,B(3,0)
2、
把4组A、B坐标分别代入y=ax²+bx+3
得:
a=3/5,b=-18/5
a=3/5,b=18/5
a=-1,b=-2
a=-1,b=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
⑴令x=0得y=3则C﹙0,3﹚
0C=3又tan∠OCA=1/3=OA/OC
则OA=1
S△ABC=6.=½AB×OC=×3½AB
AB=4 OB=0A+AB=1+4=5
∴A的坐标为﹙1,0﹚B的坐标为﹙5,0﹚或A的坐标为﹙-1,0﹚B的坐标为﹙-5,0﹚
⑵当A的坐标﹙1,0﹚B的坐标﹙5,0﹚时
抛物线的解析式y=a﹙x-1﹚﹙x-5﹚
将﹙0,3﹚代人得a=3/5
抛物线的解析式y=3/5﹙x-1﹚﹙x-5﹚=3/5﹙x-3﹚²-12/5
顶点坐标﹙3,-12/5﹚
同理A的坐标﹙-1,0﹚B的坐标﹙-5,0﹚时抛物线的解析式y=a﹙x+1﹚﹙x+5﹚
将﹙0,3﹚代人得a=3/5
抛物线的解析式y=3/5﹙x+1﹚﹙x+5﹚=3/5﹙x+3﹚²-12/5
顶点坐标﹙-3,-12/5﹚
以上是a>0时的情形 a<0时也同理可求
0C=3又tan∠OCA=1/3=OA/OC
则OA=1
S△ABC=6.=½AB×OC=×3½AB
AB=4 OB=0A+AB=1+4=5
∴A的坐标为﹙1,0﹚B的坐标为﹙5,0﹚或A的坐标为﹙-1,0﹚B的坐标为﹙-5,0﹚
⑵当A的坐标﹙1,0﹚B的坐标﹙5,0﹚时
抛物线的解析式y=a﹙x-1﹚﹙x-5﹚
将﹙0,3﹚代人得a=3/5
抛物线的解析式y=3/5﹙x-1﹚﹙x-5﹚=3/5﹙x-3﹚²-12/5
顶点坐标﹙3,-12/5﹚
同理A的坐标﹙-1,0﹚B的坐标﹙-5,0﹚时抛物线的解析式y=a﹙x+1﹚﹙x+5﹚
将﹙0,3﹚代人得a=3/5
抛物线的解析式y=3/5﹙x+1﹚﹙x+5﹚=3/5﹙x+3﹚²-12/5
顶点坐标﹙-3,-12/5﹚
以上是a>0时的情形 a<0时也同理可求
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |