高二数学选修2-1圆锥曲线的应用 5

在直角坐标系xOy中,设椭圆C:(x2/a2)+(y2/b2)=1(a>b>0)的左右两个焦点分别为F1、F2,过右焦点F2且与X轴垂直的直线L与椭圆C相交,其中一个交点... 在直角坐标系xOy中,设椭圆C:(x2/a2)+(y2/b2)=1(a>b>0)的左右两个焦点分别为F1、F2,过右焦点F2且与X轴垂直的直线L与椭圆C相交,其中一个交点为M(√2,1) (1)求椭圆C的方程(2)设椭圆C的一个顶点为B(0,-b),直线BF2交椭圆C于另一点N,求▲F1BN的面积。 展开
sbksssok
2011-12-20 · 超过16用户采纳过TA的回答
知道答主
回答量:54
采纳率:0%
帮助的人:40.9万
展开全部
c2=2 b2/a=1 b2=a
a2-2=a a=2或a=-1(舍)
b2=2
椭圆C的方程(x2/4)+(y2/2)=1
(2)直线BF2方程是y=x-√2与(x2/4)+(y2/2)=1 联立求解得N(4√2/3,√2/3)

F1BN的面积=(F1F2)(√2/3+√2/)/2=(2√2)(4√2/3)/2=8/3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式