求柯西审敛原理的充分性证明 数学高手们进哈,最好过程清晰,谢谢哈

求柯西审敛原理的充分性证明... 求柯西审敛原理的充分性证明 展开
匿名用户
2013-11-11
展开全部
1、首先证明Cauchy列有界
取e=1,根据Cauchy列定义,取自然数N,当n>N时有c
|a(n)-a(N)|<e=1
由此得:
|a(n)|=|a(n)-a(N)+a(N)|<=|a(n)-a(N)|+|a(N)|<1+|a(N)|
(通俗理解,a(n)无论怎么样也大不过a(N)绝对值加1,显然根据经验这是有界的。但数学里需要严格的表达,下面因为N前的N-1个项,有最大值,所以得出了有界).
令:
M=Max{|a(1),a(2),……,|a(N)|,|a(N)|+1}
这样就证明了,对于任何n都有a(n)<=M。
所以Cauchy列有界。

2、其次在证明收敛
因为Cauchy列有界,所以根据Bozlano-Weierstrass定理(有界数列有收敛子列)存在一个子列aj(n)以A为极限。那么下面就是要证明这个极限A也就是是Cauchy列的极限。(注意这种证明方法是实数中常用的方法:先取点性质,然后根据实数稠密性,考虑点领域的性质,然后就可以证明整个实数域的性质了)
因为Cauchy列{a(n)}的定义,对于任意的e>0,都存在N,使得m、n>N时有
|a(m)-a(n)|<e/2
取子列{aj(n)}中一个j(k),其中k>N,使得
|aj(k)-A|<e/2
因为j(k)>=k>N,所以凡是n>N时,我们有
|a(n)-A|=|a(n)-aj(k)|+|aj(k)-A|<e/2+e/2=e
这样就证明了Cauchy列收敛于A.
即得结果:Cauchy列收敛

注意:
1、e是表示按照读音epslon写的那个希腊文。
2、上面a(n)表达中,n表示下标;aj(n)中,j(n)表示a的下标,n表示j的小标。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式